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ABSTRACT
Annotation is some form of data that is added to an existing
database. It could be additional data that for whatever
reason cannot be stored in the original database, or it could
be some form of metadata such as comments, probabilities,
timestamps that are not normally regarded part of the basic
database design. It has recently been observed that, in order
to determine how annotations should be propagated through
database queries, we need to have some structure on them.
Although various forms of annotation have been considered
in some detail, each form has been considered in isolation.

In this paper we consider what happens when different
forms of annotation are combined. We show that there are
many cases in which annotations, for quite natural reasons,
depend on one another. What is the appropriate structure
to place on such annotations? We provide a method for
combining different forms and provide a normal form which
is useful in deciding whether two or more combined annota-
tions are equivalent.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design; H.2.4
[Database Management]: Systems—Relational databases;
F.m [Theory of Computation]: Miscellaneous

General Terms
Design, Theory

Keywords
Annotation, provenance, semirings

1. INTRODUCTION
Annotation is a major industry. The main value of cu-

rated databases [14] lies in the addition of annotations by
experts; the whole idea of linked data [4] is arguably about
the annotation of existing structures; and several extensions
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to relational databases, such as probabilistic databases, c-
tables, various forms of provenance, etc. [18] can be seen as
annotations on the tuples of existing tables.

An observation that has emerged relatively recently is that
annotations have structure [18, 17]. The understanding of
this structure is prompted by the following central question:
how should annotations be propagated through queries [10,
11]? For example, if annotations are sets of user comments
and we have tuples r ∈ R and s ∈ S that are respectively
annotated with sets of comments Ar and As. A tuple t re-
sulting from the “merge” of r and s in R ∪ S when r = s
would carry the annotation Ar ∪As. Similarly if t is the re-
sult of concatenating tuples r and s in R ./ S, t would also
carry the same union of annotations. However if Br and Bs

are sets of people who believe the tuples r and s to be true,
we would probably take the annotation to be Br ∪ Bs for
a union operation on r and s but Br ∩ Bs for join. Thus
we would use different algebraic structures for propagating
comment annotations through queries and for propagating
belief annotations. In [18] a quite general provenance semir-
ing structure is proposed for describing annotations on tu-
ples. It is capable of representing a wide variety of forms
of annotation. In fact, it is claimed to be the most gen-
eral structure for annotating the relational algebra, because
any other annotation structure is a homomorphic image of
it. But what happens if we have two kinds of annotations?
How do they interact? This is the question we address in
this paper.

It is often tacitly assumed that different kinds of anno-
tation are independent of each other. In curated databases
different people with different expertise can annotate some
underlying database. In this case one would assume the an-
notations to be independent, as it is in the next example.

Example 1. Suppose we have a bibliography on a topic,
represented by a table Publication(Id,Title,Authors, . . .).
One could imagine one group of experts annotating each en-
try with a set of keywords by creating Keywords(Term, Id)
and another group or system annotating each entry with ci-
tations Cites(CId, Id). We expect these two annotations to
operate independently, and that whatever algebraic rules we
use for combining keywords or citations will operate inde-
pendently of each other.

What we show in this paper is that there are many natural
cases in which annotations are not independent and that we
need to ask what is the appropriate algebraic structure when
there is a dependency between annotations. Even the ques-
tion of whether two dependent annotations are equivalent is



non-trivial. Here is an simple example of such annotations
taken from [9].

Example 2. Suppose we have the information on export
partners of countries such as given in Fig. 1(a). Here we
think of the base data as a table Export(CName,Goods) of
countries with the goods they export. Added to each tuple
are two annotations, one containing the period for which
this tuple is valid and another a list of the export partners
for those goods. If we project on CName in a query Q shown
in Fig. 1(b) and combine the annotations for Time and Cus-
tomers independently we get the annotated tuple indicating
that the UK, Germany, Italy and Cyprus were export cus-
tomers from 2004-2010. This would make sense if the two
annotations were independent, but it is incorrect because
the Customers annotation clearly depends on Time. That is,
Fig. 1(b) is an incorrect annotation, and we want to formu-
late a correct semantics for combining annotations.

An obvious response to this example is that we have rep-
resented the information incorrectly. If instead we had made
customers and times a part of the basic data by creating a
table Export(CName,Goods,Customer,Year) in a first nor-
mal form in which time intervals are represented as the set
of years it spans, we would not have seen this anomaly. The
problem is that we can only do this when the annotation
is a finite set, and this cannot be done for annotations such
as probabilities, degree of trust, cardinalities, etc. Moreover,
even when the annotation is a set, the representation is inac-
curate because we want to be able to annotate a tuple with
the empty set without it disappearing.1 Finally, following
our comparison above of comment and belief annotations,
even when the annotation is a set and we can create a tabu-
lar representation, we need to take care in the interpretation
of results of queries on such tables.

There are many practical examples of dependent anno-
tations. The main strength of the major protein database
SWISS-PROT [5] is the manual annotation of existing se-
quence data. Interestingly, in this database the times of both
the last sequence update and the last annotation update are
recorded, perhaps indicating an awareness by the curators
of the interaction between these two forms of annotation.
There are numerous examples of interacting annotations in
belief databases ([15]) and in web sites where users anno-
tate other annotations with, for example, some indication of
trust.

Hence, the main goal of this paper is to develop the ma-
chinery for combining dependent annotations for the rela-
tional algebra. In the preliminaries we summarize the basic
algebraic structures for annotations on tuples in the positive
relational algebra introduced in [18]. In Sec. 3 we look on the
general question how annotations can interact between each
other. In Sec. 4 the definition of combined annotations is
given and an equivalence relation on them introduced which
represents the fact that different combined annotations carry
the same information. In Sec. 5 the algebraic operations for
combined annotations are defined, and it is shown that they
form a semiring structure. In Sec. 6 a normal form for com-
bined annotations is defined and a normalization algorithm
is presented. We conclude with a discussion of some of the
practical issues in Sec. 7.
1One could also use a separate table and an inclusion de-
pendency, but even this is problematic when one considers
more than two dependent annotations.

Exports:
CName Goods Time Customers

Greece Food 2004-2008 UK, Germany
Greece Textile 2007-2010 Germany, Italy, Cyprus

(a)

Q = πCName(Exports) :
CName Time Customers

Greece 2004-2010 UK, Germany, Italy, Cyprus

(b)

Figure 1: (a) Relation with two annotations and
(b) Query if the annotations considered independent

The proofs for propositions and theorems are given in the
Appendix.

2. PRELIMINARIES
An algebraic structure K = 〈K,⊕,⊗,0, 1〉 with binary op-

erations sum ⊕ and product ⊗ and constants 0 and 1 is a
(commutative) semiring iff 〈K,⊕, 0〉 and 〈K,⊗, 1〉 are com-
mutative monoids with identities 0 and 1 correspondingly,2

⊗ is distributive over ⊕, and for each v ∈ K it holds that
v ⊗ 0 = 0.

Commutative semirings are shown ([18]) to be essential
structures for annotation domains of a positive relational
algebra. The simplest example of a semiring used for anno-
tation is B = 〈{false, true},∨,∧, false, true〉. Databases an-
notated with this semiring is a model for usual relational
databases without any annotations: in this case each tuple
is annotated with true to indicate whether it is “in” the cur-
rent version or false to indicate whether it is not. In order
to determine whether a tuple should be “in” the result of a
positive query we apply ∨ and ∧ to annotations of source
tuples of union and join operations, correspondingly.

Example 3. The following are semirings which we use for
annotations in examples of this paper.
(1) The bag semiring N = 〈N0,+,×, 0, 1〉 where N0 is the set
of natural numbers with 0. This semiring is used to model
the standard bag semantics.
(2) The boolean algebra AS =

〈
2S ,∪,∩, ∅, S

〉
where S is a

set of arbitrary keys. Particular examples of finite boolean
algebras are AΩ used to model probabilistic databases ([13,
23]), where Ω is a finite set of events; AB where B is the
set of people who may believe in tuples; and AE where E
is the set of possible export partners. The latter one is
the domain for the second annotations Customers in Ex. 2.
Another example of a boolean algebra is the time semiring
AT where T is a set of time stamps which can be either finite,
countable or even uncountable (for a continuous time), but
in the latter two cases the set 2T may be restricted to any
subset closed under ∪ and ∩ for representation purposes;
particularly, in Ex. 2 the first annotations Time come from
the time semiring AY where Y is the set of years.

2Recall that a commutative monoid is a set with an asso-
ciative and commutative binary operation and an identity
element.



(3) The fuzzy semiring [20]K[0,1] = 〈[0, 1],max,⊗, 0, 1〉 where
⊗ is any t-norm which distributes over max; in this paper
we consider the t-norm to be the usual multiplication.
(4) The lineage semiring [12, 6] LX =

〈
2X ∪ {⊥},+, ·,⊥, ∅

〉
where X is a set of variables and for each S and T it holds
that ⊥ + S = S + ⊥ = S,⊥ · S = S · ⊥ = ⊥ and S + T =
S · T = S ∪ T if S, T 6= ⊥. If C is a set of atomic comments
then LC can be used to model databases with comments.
(5) The provenance semiring [18] PX = 〈N[X],+,×, 0, 1〉
where N[X] is the set of all positive polynomials with vari-
ables from a finite set X.

Other interesting semirings used for annotations include
the c-table semiring [19], the distance or tropical semiring,
the why semiring [6], the security semiring [3], etc.

We will refer to semirings used for annotating databases
as annotation domains.

Formally, we have the following definitions for the rela-
tional model [1]. A U -tuple is a function t : U → D, where
U is a finite set of attributes and D is a domain of values.
The set of U -tuples is denoted by U -Tup. For a semiring
K = 〈K,⊕,⊗, 0,1〉 a K-relation is a function R : U -Tup →
K such that its support, i.e., the set Supp = {t | R(t) 6= 0},
is finite. A positive relational algebra on K-relations [18]
(denoted by RA+

K) contains operators:

empty relation for any set of attributes U there exists ∅ :
U -Tup→ K such that ∅(t) = 0;

union if R1, R2 : U -Tup → K then R1 ∪ R2 : U -Tup → K
such that

(R1 ∪R2)(t) = R1(t)⊕R2(t);

projection if R : U -Tup→ K and V ⊆ U then πV (R) : U -
Tup→ K such that

(πV (R))(t) =
⊕

t=t′ on V

R(t′);

selection if R : U -Tup → K and P : U -Tup → {0,1} is a
selection predicate then σP(R) : U -Tup→ K such that

(σP(R))(t) = R(t)⊗P(t);

natural join if Ri : Ui-Tup → K, i = 1, 2, then R1 ./ R2 :
(U1 ∪ U2)-Tup→ K such that

(R1 ./ R2)(t) = R1(t)⊗R2(t);

renaming if R : U -Tup→ K and β : U → U ′ is a bijection
then ρβ(R) : U ′-Tup→ K such that

(ρβ(R))(t) = R(t ◦ β).

A fundamental property of semirings for the positive re-
lational algebra is a homomorphism property, i.e., for semir-
ings K = 〈K,⊕,⊗, 0, 1〉 and K′ = 〈K′,⊕′,⊗′, 0′, 1′〉 and a
mapping h : K → K′, extended to the transformation from
K-relations to K′-relations, the equality Q(h(R)) = h(Q(R))
holds for every positive query Q ∈ RA+

K iff h is a semiring
homomorphism. The provenance semiring PX from Ex. 3
is the most general in the sense that all other semirings are
homomorphic images of it. We refer the reader to [18] for
further details.

3. DEPENDENCIES BETWEEN ANNOTA-
TION DOMAINS

In Ex. 1 and Ex. 2 we saw that two annotation domains
can be either independent or dependent. In this section we
will look how several domains can interact with each other.

Coming back to Ex. 2, one can assume that Customer
annotations pertain to the tuple for a specific Time period.
Another assumption would be that the sets of customers are
placed on the tuples and that the time intervals are placed on
those sets to indicate the periods for which the customers are
valid. This situations are different semantically. However,
if we abstract away from the meanings of these annotations,
it is clear that syntactically these cases are the same. As
another example of difference between semantics and syntax
of annotations, we can look at the following.

Example 4. Consider a belief database where tuples are
annotated with sets of believers, which in turn are anno-
tated with other sets of believers, i.e., we want to record
information like “Alice believes that Bob believes in a tu-
ple t”. To do it we can use two copies A′B and A′′B of the
same annotation domain AB . Here the semantics of A′B
is “who believes in a tuple” and of A′′B – “who believes in
someone’s belief in a tuple”, i.e., there is a clear semantic
order on these domains. However, if we have a database
annotated like this, nothing prevents us from interpreting
elements from A′′B as believers in tuples and elements from
A′B – as believers in believers of these tuples. Again, these
situations are semantically different, but syntactically the
same.

For our mathematical development of combined annota-
tions we shall therefore consider the dependency relation on
annotations domains to be undirected (i.e., symmetric). We
will use K′ 
 K′′ to indicate that the domains K′ and K′′
are mutually dependent.

So far we have looked on situations when we have only
two annotation domains. But it is possible to have more
than two, and the situation is quite subtle. It can happen in
curated databases that different people are responsible for
annotating other annotations of the data, and the interac-
tion between these requires some care. We give a contrived
example, but one which reflects the practice in databases
that are constructed by some community.

Example 5. Suppose we want to construct a database of
composers with details of their lives and what they wrote by
a process of annotation. To start with we create a “base” ta-
ble Composers(CompName,BDate) which contains names
CompName and dates of birth BDate of composers. We now
want to describe when each of them was active and anno-
tate the tuples with a set of years, i.e., use the annotation
domain AY .

Now a further annotation is added to describe what works
a composers wrote. For this we can use an annotation do-
main AW there W is the set of all works. (We can assume,
if we want, that a work can have more than one composer.)
Since we want to record the years in which the composer
wrote the work, the domains AY and AW are dependent.
That is AY 
 AW .

There are several further annotations one might associate
with the previous structure: transaction time (the period for
which the information is in the database), believers (the set



of people who believe the data) or, as is common in curated
databases, set of validators V , the people who have checked
that the data is correct. Taking validators as an example, we
use AV as the third domain. However, we have to ask what
is being validated. There are several different possibilities.
Here are three of them:

1. The validators check that the composer wrote the work
at the time specified by AW and AY . In this case
all three annotations are mutually dependent: AY 

AW , AW 
 AV , and AY 
 AV .

2. The validators check that the composer wrote the work,
but do not verify the time. here we have AW 
 AY
and AW 
 AV , but AY 6
 AV .

3. The validators check only that a composer tuple is
valid. Here we have the annotation domain AV inde-
pendent of AY and AW , i.e., AW 
 AY , but AW 6

AV and AY 6
 AV .

We shall consider a general case in which we are given
fixed n annotation domains. (In general, some of them can
coincide, but to simplify notation we consider all of them
to be different). Let Ki = 〈Ki,⊕i,⊗i, 0i, 1i〉, 1 ≤ i ≤ n,
be these domains and denote the set of them by K. To
summarize the discussion above, we have the following def-
inition which can express all possible interactions between
annotations domains.

Definition 1. Given a set of semirings K, we call de-
pendency graph a binary irreflexive symmetric relation 

on K. We say a set I ⊆ K is maximal independent over 

(or simply independent, for short) and write I *
 iff for
each Ki and Kj from I it holds that Ki 6
 Kj. For conve-
nience, we write i ∈ I iff Ki ∈ I.

Example 6. In Ex. 5 we have K = {AY ,AW ,AV } and for
the corresponding cases of 
 the independent sets are

1. {AY }, {AW }, and {AV };

2. {AW } and {AY ,AV };

3. {AW ,AV } and {AY ,AV }.

One more issue which should be mentioned here is the
possibility of “loops” in a dependency graph, i.e., the cases
when we have four (or more) domains connected by 
 in a
circle and no other dependencies hold between them. It is
not obvious whether such situations should be allowed, or
the structure of
 should be restricted to being “tree-like”.3

However, whether or not we have this restriction does not
change the development in this paper, so for convenience we
follow the general case.

4. COMBINED ANNOTATIONS
Having established the notion of dependency graph, in

this section we will look at combined annotations over such
graphs. We first consider the structure of a combined anno-
tation and give its formal definition. After this we introduce
some additional assumptions about the semirings K, which,
on the one hand, allow us to obtain desirable properties of

3Strictly speaking the assumption is that 
 is chordal.
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Figure 2: Graphical representation of annotations

combined annotations and, on the other, are minor enough
to be satisfied by all semirings considered in the literature
for annotations of which we are aware. Then we consider
a containment preorder relation on combined annotations
and some of its properties first for the simple case of two
dependent domains and second for an arbitrary dependency
graph. Finally, we look at the induced equivalence which
formalize an intuition that different annotations can repre-
sent essentially the same information.

An annotation to a tuple is value from a specific annota-
tion domain. If we need to annotate a relation with several
domains, one could expect annotations to be vectors with
components from these domains. But returning to Ex. 2, it
is easy to see that it is in general impossible to represent
annotation information for a tuple correctly by a single vec-
tor of annotations. The following definition states that a
sufficient structure for elements of combined annotations is
a set of such vectors.

Definition 2. A combined annotation over a set of do-
mains K = {K1, . . . ,Kn} is a finite non-empty set of vectors
from K1 × . . .×Kn.

We use Greek letters to denote combined annotations. To
justify this definition, consider the following example.

Example 7. As we saw in Ex. 2 the annotation for the
tuple in the query Q in Fig. 1(b) is an undesirable over-
approximation of the correct information. Possible repre-
sentations for this information are the following combined
annotations:

λ′ =
{ ( 2004-2008, {UK, Germany} ),

( 2007-2010, {Germany, Italy, Cyprus} ) };

λ′′ =

{ ( 2004-2008, {UK, Germany} ),
( 2007-2010, {Germany, Italy, Cyprus} ),
( 2007-2008, {UK, Germany, Italy, Cyprus} ),
( 2004-2010, {Germany} ) }.

The first of these, λ′ is an annotation derived from anno-
tations in Fig. 1(a) by simple merging. The second, λ′′ is
a different but equivalent annotation. Note, that in this
example elements of the original domains AY and AE are
respectively sets of years and countries, so the annotations
are not just sets of pairs of elements from the combining
domains AY and AE , but sets of pairs of subsets of these
domains. Graphical representations of these annotations are
shown in Fig. 2(a) and (b) where the solid dots represent
the information which should be covered by the annotation
pairs, and the hollow dots are the undesirable ones result-
ing from over-approximation. The round-corner rectangles



bound the elements of λ′ and λ′′, each of which is a product
of two sets.

As we have seen in this example, one set of rectangles
can cover all the dots covered by another one, i.e., represent
more information. Moreover, different sets of rectangles can
cover the same set of dots indicating that different combined
annotations can represent the same information. Hence, our
next step is to define containment and equivalence relations
on combined annotations. The first one will be a preorder.
It will induce the second one which forms a quotient set of
equivalent combined annotations. However, we need to take
into account that in the example both of the domains are
finite boolean algebras, i.e., semirings with strong additional
requirements. Many annotation domains are not finite (e.g.,
the semiring of continuous time) and even not boolean al-
gebras (e.g., the bag semiring), so equivalence cannot – as
Fig. 2 might suggest – in general be expressed in terms of
subsets of a cartesian product. Next we introduce restric-
tions to semirings which allow us to define the containment
and equivalence relations but weak enough to be satisfied by
all known annotation domains.

Definition 3. Given a semiring K = 〈K,⊕,⊗,0, 1〉 let E
be the preorder of K, defined as u E v iff there exists w ∈ K
such that u ⊕ w = v. The semiring K is naturally lattice
ordered (l-semiring for short) iff E forms a lattice on K,
i.e., for every pair v, u ∈ K there exist the least upper bound
v t u and the greatest lower bound v u u in K (w.r.t. E).

A trivial property of l-semirings is that the order E is com-
patible with ⊕ and ⊗, i.e., for each u1, u2 and u3 if u1 E u2

then u1 ⊕ u3 E u2 ⊕ u3 and u1 ⊗ u3 E u2 ⊗ u3. The natu-
ral lattice order will be important in Def. 4 of containment
of combined annotations. Hence, from now on we assume
that all domains in K are l-semirings. We will usually omit
indexes on their operation and predicate symbols when the
instantiation is clear. Also, we will use E to denote their lat-
tice orders as well as the pairwise order induced on vectors
from K1 × . . . ×Kn: (u1, . . . , un) E (v1, . . . , vn) iff ui E vi,
i = 1, . . . , n.

Example 8. All the semirings in the list given in Ex. 3
are l-semirings. All the substantiations of ⊕ except for the
bag and provenance semirings are idempotent which means
that t coincides with ⊕. The dual operation u is realized
as ⊗ in boolean algebras. For the bag semiring t and u are
realized as max and min correspondingly.

Note, that every l-semiring is bounded below and the min-
imal element is always 0. However, it is not necessary for an
l-semiring to be bounded above. For example, the bag and
provenance semirings do not have maximal elements.

Now we are ready to define a containment for combined
annotations. For readability first we start with the case of
two dependent domains.

Definition 4. Let K consist of two dependent over 

l-semirings K1 and K2. Then λ �∗ µ holds for combined
annotations λ and µ over K iff there exist

• combined annotations λ′ and µ′ such that λ′ ⊆ µ′ and

• vectors (u1, u2), (v1, v2) and (w1, w2) such that

- either u1 t v1 E w1 and u2 = v2 = w2,

- or u2 t v2 E w2 and u1 = v1 = w1;

such that

λ = {(u1, u2), (v1, v2)} ∪ λ′,
µ = {(w1, w2)} ∪ µ′.

A combined annotation λ is contained in µ iff λ � µ, where �
is the transitive closure of �∗.

Since �∗ is clearly reflexive, the containment relation �
is a preorder. Trivially, for each λ and µ it holds that λ �
λ ∪ µ. The definition of containment as a transitive closure
is intuitive, but not constructive. Next we give an algebraic
characterization of this relation for a special case when the
underlying lattices of the domains are distributive.4 (We
will discuss such domains in more detail in Sec. 5.) Again,
we characterize the containment for the special case of two
dependent domainsK1 andK2. To do it we need an auxiliary
notion: for a combined annotation λ over K = {K1,K2} and
w ∈ K1 we use Cov(λ,w) for the set of subsets of λ covering
w by the first component, i.e., the set of all κ ⊆ λ such that

w E
⊔

(u1,u2)∈κ

u1.

Proposition 1. For combined annotations λ and µ over
K = {K1,K2} such that K1 and K2 are dependent l-semirings
and the underlying lattices are distributive, the following are
equivalent:

(1) λ � µ,
(2) for every value w ∈ K1 it holds that

⊔
κ′∈Cov(λ,w)

 l

(u1,u2)∈κ′
u2

 E ⊔
κ′′∈Cov(µ,w)

 l

(v1,v2)∈κ′′
v2

 .

Note, that in the left hand side of the latter equation the
outer t is given just for symmetry and can be safely replaced
by a universal quantification over all κ′ from Cov(λ,w).
Also, as opposed to Def. 4 this characterization is asymmet-
ric w.r.t. the order of the domains. It means that we can
formulate a “mirror” analog of Prop. 1 based on the notion
of covering by the second component.

Example 9. Consider combined annotations λ′ and λ′′ in
Ex. 7 with their graphical representations in Fig. 2. For the
element w = 2004-2006 from AY the set Cov(λ′, w) consists
of all κ′ such that

{(2004-2008, {UK,Germany})} ⊆ κ′ ⊆ λ′,

and the set Cov(λ′′, w) consists of all κ′′ such that

{(2004-2008, {UK,Germany})} ⊆ κ′′ ⊆ λ′′or
{(2004-2010, {Germany})} ⊆ κ′′ ⊆ λ′′.

Which means that on both sides of the inequality from the
part (2) in Prop. 1 we have {UK,Germany}, i.e this in-
equality holds. By the same reasons for every other w ∈ AY
the corresponding inequality also holds, which shows that
by Prop. 1 we have λ′ � λ′′ as desired. Similarly we can
check, that µ � λ′′ holds for any set of rectangles µ which
cover some solid dots from Fig. 2, but none of the hollow
dots.

4A lattice is distributive iff (u t v) u w = (u u w) t (v u w)
holds for every elements u, v and w.



Now we give the definition of the containment relation for
the general case of an arbitrary dependency graph.

Definition 4′. Let K be a set of l-semirings and 
 be a
dependency graph over it. Then λ �∗ µ holds for combined
annotations λ and µ over K iff there exist

• an independent set I *
,

• combined annotations λ′ and µ′ such that λ′ ⊆ µ′, and

• vectors (u1, . . . , un), (v1, . . . , vn) and (w1, . . . , wn) such
that ui t vi E wi for each i ∈ I, and ui = vi = wi oth-
erwise

for which

λ = {(u1, . . . , un), (v1, . . . , vn)} ∪ λ′,
µ = {(w1, . . . , wn)} ∪ µ′.

A combined annotation λ is contained in µ iff λ � µ, where
� is a transitive closure of �∗.

This definition is a generalization of Def. 4. Indeed, if
K consists of two dependent domains K1 and K2, there are
two independent sets I1 = {K1} and I2 = {K2}. Hence,
each of the cases in the second condition in Def. 4 is just an
instantiation of the third condition in Def. 4′.

The containment relation for the general case is a preorder
as well. It is also possible to generalize the characterization
from Prop. 1. However, it would look rather unreadable,
since a domain may be in different independent sets of a
dependency graph. Hence, we leave it out of the presentation
of this work.

Note, that the definitions of combined annotations use
only the lattice operations and does not assume any other
structure on the annotation domains, i.e., the containment
preorder is well-defined for any set of l-semirings and any
dependency graph.

Next we introduce the equivalence on combined annota-
tions.

Definition 5. Given a set of l-semirings and a depen-
dency graph 
 over K, combined annotations λ and µ are
equivalent over 
 (written λ ∼ µ) iff λ � µ and µ � λ, i.e.,
∼ is the equivalence relation induced by �.

We use λ∼ for the equivalence class which contains λ.
The following example shows that the equivalent com-

bined annotations really formalize the intuition that they
represent the same information.

Example 10. Coming back to Fig. 2, in Ex. 9 we saw that
λ′ � λ′′. Similarly, we can show that λ′′ � λ′, which means
that λ′ ∼ λ′′ as expected.

A trivial property of the equivalence is that if a combined
annotation λ contains a vector (u1, . . . , un) which is greater
(by E) than a vector (v1, . . . , vn) then λ ∼ λ∪{(v1, . . . , v2)}.
It means, that the equivalence of combined annotations is
stable against adding and removing vectors which are less
than other vectors in the annotation.

Hence, our object of interest is the quotient set of the com-
bined annotations over the equivalence relation ∼. We write
this set C∼[K]. Also, we will sometimes refer to combined
annotations by their equivalence classes if it does not intro-
duce an ambiguity. In the next section we will construct a
semiring of combined annotations which will allow to use it
as a proper annotation domain.

5. SEMIRINGS OF COMBINED ANNOTA-
TIONS

Having defined the set of combined annotations C∼[K],
the next step is to introduce basic operations on it. First
we will define the operations ⊕ and ⊗ for combined annota-
tions, ignoring the equivalence ∼. After it we will show that,
with a reasonable restriction for the semirings, ∼ is in fact
a congruence relation w.r.t. ⊕ and ⊗, i.e., it can be safely
applied to any element of an equivalence class. Finally, we
will prove that C∼[K] with those operations forms a semir-
ing (again, under some assumptions about the dependency
graph 
). This will allow us to use combined annotations
as a domain for RA+

K.
As for the definition of the containment relation in the

previous Sec. 4, for the readability reasons we will first define
⊕ and ⊗ for the simplest interesting case of two dependent
domains.

Definition 6. Let K1 and K2 be dependent l-semirings.
Then the sum of combined annotations λ and µ over K =
{K1,K2} is defined as follows:

λ⊕ µ = λ ∪ µ ∪
{(u1 ⊕ v1, u2 u v2) | (u1, u2) ∈ λ, (v1, v2) ∈ µ} ∪
{(u1 u v1, u2 ⊕ v2) | (u1, u2) ∈ λ, (v1, v2) ∈ µ}.

The idea behind this definition is the following. For every
pair of vectors (u1, u2) ∈ λ and (v1, v2) ∈ µ the value u2uv2

is their “common part” by the second component. Hence,
both of the first components u1 and v1 “hold” on this com-
mon part, and their sum should be included to λ ⊕ µ on
u2 u v2. It means that λ ⊕ µ should contain the vector
(u1 ⊕ v1, u2 u v2). By the reasons of symmetry it should
contain also the vector (u1 u v1, u2 ⊕ v2). Finally, λ ⊕ µ
should be always greater than both λ and µ, so it includes
them as subsets.

Example 11. As we have already observed, the semirings
AY and AE are boolean algebras which means that their
sums coincide with t (as set unions). Hence, for the com-
bined annotations from Ex. 7 we have

{(2004-2008, {UK,Germany})} ⊕
{(2007-2010, {Germany, Italy, Cyprus})} = λ′′.

In this simple example the domains are boolean algebras
and, hence, their ⊕ are dual for u. However it is powerful
enough to handle also any l-semirings where ⊕ and u are
not dual.

Definition 7. The product of combined annotations λ
and µ over K = {K1,K2} with dependent components is
defined as follows:

λ⊗ µ = {(u1 ⊗ v1, u2 u v2) | (u1, u2) ∈ λ, (v1, v2) ∈ µ} ∪
{(u1 u v1, u2 ⊗ v2) | (u1, u2) ∈ λ, (v1, v2) ∈ µ}.

The intuition behind the definition of the product is al-
most the same as for the definition of the sum, but the dif-
ference is that it does not contain the multipliers λ and µ as
subsets, which appears to be reasonable for many examples.
One of them is the following.



Example 12. If K1 and K2 are dependent boolean alge-
bras, then their products coincide with corresponding u. It
means that the definition of the product over K = {K1,K2}
collapses just to pairwise intersection of components.

However, we have more freedom in the choice of the prod-
uct than we have for the sum. For example, if both K1 and
K2 are lineage semirings, since the sum and product behave
similarly for each of them, it might be expected for the sum
and the product of their combined annotations also to be
similar. In this case it is reasonable to include to the prod-
uct λ ⊗ µ the sources λ and µ, as it is for the sum λ ⊕ µ.
We leave this choice open but note that it is important to
check the dependency graph 
 to be an ad-graph w.r.t. ⊕
and this new ⊗, as it is needed in Theor. 1 (see further in
this section).

Next we define ⊕ and ⊗ for the general case of arbitrary
set K and dependency graph 
. To do it we need auxiliary
extension operations ⊕I and ⊗I over an independent set
I *
 defined for any vectors (u1, . . . , un), (v1, . . . , vn) in
the following way:

(u1, . . . , un)⊕I (v1, . . . , vn) = (u1 ◦1 v1, . . . , un ◦n vn),

where ◦i =

{
⊕ if i ∈ I,
u if i /∈ I;

(u1, . . . , un)⊗I (v1, . . . , vn) = (u1 �1 v1, . . . , un �n vn),

where �i =

{
⊗ if i ∈ I,
u if i /∈ I.

The meaning of these extensions is the following: for a pair
of vectors it constructs a vector which is the sum (or the
product) of them on some pairwise independent dimensions
but the intersection on all other dimensions. It means that
we sum (or multiply) the elements of the vectors only for
the “common” part of the values of the dependent domains.
The extensions generalize vectors like (u1 ⊕ v1, u2 u v2) in
Defs. 6 and 7.

Example 13. In the settings of Ex. 7, for I = {AY } we
have

(2004− 2008, {UK,Germany}) ⊕I

(2007− 2010, {Germany, Italy, Cyprus}) =
(2004− 2010, {Germany}).

Having the extensions we are ready to define the ⊕ and ⊗
operations for the general case of combined annotations.

Definition 6′. Given a set of l-semirings K, for any
pair λ, µ of combined annotations over 
:

λ⊕ µ = λ ∪ µ ∪
{(u1, . . . , un)⊕I (v1, . . . , vn) |
(u1, . . . , un) ∈ λ, (v1, . . . , vn) ∈ µ, I *
}.

Definition 7′. Similarly,

λ⊗ µ = {(u1, . . . , un)⊗I (v1, . . . , vn) |
(u1, . . . , un) ∈ λ, (v1, . . . , vn) ∈ µ, I *
}.

These definitions are clearly generalizations of Defs. 6
and 7.

The next step is to show that the equivalence ∼ is a con-
gruence relation w.r.t. ⊕ and ⊗. However, it is not always
the case and we need one more restriction on semirings.

Definition 8. A l-semiring K is lattice-distributive (dl-
semiring, for short) if u,⊕, and ⊗ distribute over t, i.e.,
for each u, v and w the following equations of distributivity
hold

(u t v) u w = (u u w) t (v u w),
(u t v)⊕ w = (u⊕ w) t (v ⊕ w),
(u t v)⊗ w = (u⊗ w) t (v ⊗ w).

Note, that the first law says, that the underlying lattice is
distributive, and (v u u) tw = (v tw) u (u tw) also holds.

Again, all of annotation domains are dl-semirings, as far
as we are aware. For them we can state the following propo-
sition.

Proposition 2. Let all the annotation domains in K be
dl-semirings. Then the equivalence ∼ is congruent over the
⊕ and ⊗ operations, i.e., if λ ∼ λ′ and µ ∼ µ′ over 
 then
λ⊕ µ ∼ λ′ ⊕ µ′ and λ⊗ µ ∼ λ′ ⊗ µ′.

From this proposition we see that the operations are com-
patible with the equivalence and can be extended to ele-
ments of C∼[K].

Also, we need to define the 0 and 1 elements for combined
annotations. This is straightforward:

0 = {(01, . . . , 0n)}∼,
1 = {(11, . . . , 1n)}∼.

Next we want to show, that the set of combined anno-
tations C∼[K] together with ⊕ and ⊗ operations forms a
semiring. However, it is not always the case. Particularly,
consider the following example.

Example 14. Let K = {N ′,N ′′} where N ′′ and N ′′ are
two dependent bag semirings. Consider λ = {(1, 1)}, µ =
{(1, 1)} and ν = {(1, 2)}. Then (λ ⊕ µ) ⊕ ν contains the
vector (2, 2), but λ ⊕ (µ ⊕ ν) does not contain any vector
greater or equal to it (w.r.t. E). Hence these combined
annotations are not equivalent and the associativity does
not hold.

Similar things can be shown about the associativity of ⊗
and the distributivity of⊗ over⊕. Hence, we have to restrict
ourselves only with dependency graphs for which these laws
hold.

Definition 9. A dependency graph 
 is associative-
distributive (ad-graph, for short) if the corresponding oper-
ations ⊕ and ⊗ are associative, and ⊗ is distributive over ⊕.

This restriction is quite strong. As we have seen above
in Ex. 14, if 
 contains two dependent bag semirings, it is
not an ad-graph. However, we could not find a reasonable
practical example of dependent bag semirings. Next we give
some examples when 
 is an ad-graph and when it is not.

Example 15. If all domains in K are distributive lattices
then 
 is an ad-graph. If all the domains in K but one
are distributive lattices and that one is either bag, fuzzy, or
lineage semirings, then
 is still an ad-graph. However, if K
contains bag and fuzzy semirings which both are dependent
to a distributive lattice, then 
 is not an ad-graph.

Finally, we have the main theorem.



Theorem 1. Let K be a set of dl-semirings and 
 be an
ad-graph. Then the algebra

C∼[K] = 〈C∼[K],⊕,⊗, 0,1〉

forms a semiring.5

This theorem enables us to combine several annotation
domains with a complex dependency relation into a single
annotation domain for the positive relational algebra and
be sure that the annotations “pass” as expected over queries
in RA+

C∼[K]. This is one of the main results of the paper.

However, the definition of the combined annotations as a
quotient set gives us a large and impractical representation
and leaves open the question of their practical comparison.
To fill this gap, in the next section we introduce a normal
form for combined annotations and develop a normalization
algorithm.

6. NORMAL FORM FOR COMBINED AN-
NOTATIONS

The semiring C∼[K] gives us a mechanism to work with
combined annotations, i.e., annotations which are dependent
on each other. However, the definitions of the containment
� and the equivalence ∼ are not practical. It is even unclear
if the containment and equivalence are decidable. Hence, it
would be useful to have a normal form for combined anno-
tations and a normalization algorithm which would provide
the possibility of storing combined annotations in a uniform
way in order to facilitate comparison. In this section we in-
troduce such a normal form together with a normalization
procedure. Rather than starting with a pair of annotation
domains, we do this directly for an arbitrary dependency
graph.

From now on in this section, for any independent set I /∈
,
we define

�I
i =

{
t if i ∈ I,
u if i /∈ I.

Definition 10. A combined annotation λ over a set of
l-semirings K is in extensional normal form over a depen-
dency graph 
 ( e.n.f., for short) iff

(1) for every (u1, . . . , un), (v1, . . . , vn) ∈ λ and every I *

there exists (w1, . . . , wn) ∈ λ such that

(u1 �I
1 v1, . . . , un �I

n vn) E (w1, . . . , wn),

(2) it is an antichain6 (w.r.t. E).

Example 16. The combined annotation λ′′ given in Ex. 7
is in e.n.f.

To justify the claim that this is a normal form, we need
to prove that in every equivalence class from C∼[K] there
exists one and only one combined annotation in the exten-
sional normal form. Unfortunately, it is not true in the gen-
eral case. Particularly, if for two l-semirings their underlying

5It is possible to show that it is actually a dl-semiring, such
that the partial order induced on C∼[K] by the preorder �
is the natural lattice order.
6A subset of a partial ordered set is an antichain iff its
elements are pairwise incomparable.

function Expand (λ)
while exists (u1, . . . , un), (v1, . . . , vn) ∈ λ and I *
,

such that (u1 �I
1 v1, . . . , un �I

n vn) /∈ λ do

set λ := λ ∪ {(u1 �I
1 v1, . . . , un �I

n vn)};
od;
return λ

end of Expand;

function Red (λ)
while exists (u1, . . . , un), (v1, . . . , vn) ∈ λ

such that (u1, . . . , un) C (v1, . . . , vn) do

set λ := λ\{(u1, . . . , un)};
od;
return λ

end of Red;

function Norm (λ)
return Red (Expand (λ))

end of Norm;

Figure 3: Normalization algorithm

lattices are free, then their sublattices can be infinite even
for finite number of generators. Hence, we can find a com-
bined annotation such that sets with all the properties from
Def. 10 of equivalence exist, but all of them are infinite, i.e.,
not combined annotations by themselves. Hence, we have
to restrict ourselves once more to a model where e.n.f. is
always finite. A reasonable constraint is again to use semir-
ings which the lattice order is distributive, i.e., dl-semirings
from the previous Sec. 5. Distributive lattices have a prop-
erty that they are always finite if they have a finite number of
generators. Using this fact we can prove that every equiva-
lence class of combined annotations over distributive lattices
contain an element in e.n.f. (and it is finite).

Theorem 2. If all the semirings in K are dl-semirings,
then any combined annotation over a dependency graph 

has a unique equivalent one in e.n.f.

Hence, for dl-semirings e.n.f. always exists. However, the
following proposition says, that it can be exponentially large
even for boolean algebras.

Proposition 3. If K consists of two dependent infinite
boolean algebras, then for every number N there exists a
combined annotation λ over K with a polynomial in N num-
ber of elements, such that its e.n.f. contains O(2N ) ele-
ments.

The next step is to design a normalization procedure for
combined annotations. Consider the algorithm in Fig. 3. To
compute e.n.f. for a combined annotation λ one can evalu-
ate the function Norm, which successively calls Expand and
Red. In the function Expand, λ is enriched iteratively by all
possible pairs of the form (u1 �I

1 v1, . . . , un �I
n vn), I *
.

Intuitively, it “union” the values on the independent set I
on the intersection by other dimensions. In the following
Prop. 4 it will be formally proved that it does not change
the equivalence class of λ. After its evaluation the first re-
quirement of Def. 10 is satisfied. In the function Red(λ),7 all
7In this function the notation µ C ν is used as a shorthand
for (µ E ν) ∧ (µ 6= ν).



redundant vectors are removed, i.e., pairs which are strictly
less than others in λ, so that second requirement of Def. 10
is also satisfied. This function also does not change the
equivalence class of λ. Note that the exact order of choice
of pairs in these functions is not defined, but the result is
deterministic. Formally we have the following proposition.

Proposition 4. Let K be a set of dl-semirings. Then for
any combined annotation λ over K

(1) the normalization algorithm stops,
(2) Norm(λ) is a combined annotation in the e.n.f.,
(3) λ ∼ Norm(λ).

Next we give some examples of combined annotations in
e.n.f.

Example 17. As we have seen, the combined annotations
λ′ and λ′′ from Ex. 7 are equivalent and the second one is
in e.n.f. If we apply Norm to λ′ a run of Expand takes just
two iterations of the loop and the run of Red is empty. As
expected, we have Norm(λ′) = λ′′.

An obvious optimization of the algorithm is to apply Red

function after every step of Expand. It is based on the ob-
servation that vectors, which may be removed by an inter-
mediate call of Red, will give rise only to vectors which will
be removed by the final run of Red anyway.

The following proposition says, that e.n.f. offers an effi-
cient method for checking equality and containment for an-
notations, provided that the normal forms are small. How-
ever, this is not always the case, as we have seen in the
Prop. 3.

Proposition 5. Given two combined annotations λ and
µ over a dependency graph 
 in e.n.f. we have λ � µ
iff for each vector (u1, . . . , un) from λ there exists a vector
(v1, . . . , vn) from µ such that (u1, . . . , un) E (v1, . . . , vn).

To summarize, under an assumption that K consists of dl-
semirings and
 is an ad-graph, in last two sections we have
developed machinery to work with combined annotations
some of which are dependent and some of them are not.

7. PRACTICALITIES
We have seen that properly combining annotations is a

non-trivial matter. What can we do in practice? How should
we store combined annotations in such a form that we can
use them in queries? As we have seen in Prop. 3, in the
general case, for annotations arising from the combination
of two dl-semirings the extensional normal form can be ex-
ponential in the size of the given annotations and checking
equivalence is intractable. By a size of a combined anno-
tation we mean the number of pairs in it; such a choice is
justified by the fact, that an exact representation model can
be different for different annotation domains. Even when,
as in Ex. 2 each combined annotation is a pair of sets, we
have seen that it is possible to find a set of annotations
whose e.n.f. is exponential in the number of annotations.
Of course, in this special case, it is much more economical
to represent the combined annotation as the set of all pairs
that are in some annotation (the solid dots in Fig. 2).

On the other hand, the good news is that there are special
cases in which we can expect this normal form to be an effi-
cient representation for combined annotations. For example,

Figure 4: Dependency of the e.n.f. size of the size
of the original annotations

one annotation is often time – transaction or valid – and the
other annotation is monotone or almost monotone, in time.
This is the case, for example, with sets of keywords or com-
ments. Deletion of a comment is rare, and sometimes not
even allowed. In this case the representation of the combined
annotation in existential normal form is quite efficient.

Because the interdependence of annotations is not under-
stood, it is unsurprising that it is difficult to find good exam-
ples. As a crude experiment we took the information from
a suitably transformed version of the history of the World
Factbook [9, 8] which provides sets of export partners and
the set of versions which gives that set, roughly as described
in Ex. 7. For example the entry for Greece is of the form:
[v0, v1) {Italy, Germany, US, UK, France}
[v1, v2) {EU, Italy, US, UK, France}
[v2, v3) {EU, Italy, US, UK}
. . .

in which the [vi, vj) indicates that the entry was of this form
in contiguous versions vi, vi + 1, . . . , vj − 1. A plot is shown
in Fig. 4 of the size of the normal form against the size
of the input annotation for the 258 countries that have a
non-empty annotation, grouped by the size of their input
annotations.

The average increase in size of e.n.f. over the size of the
input annotation is about 1.6. Very little should be inferred
from this example. We should reiterate that in this case,
there are more efficient methods of storing the annotation for
the purpose of evaluating algebraic expressions over them,
but it gives some indication that there are cases in which
the extensional normal form is practical.

8. RELATED AND FUTURE WORK
In this paper we have attempted to provide a basis for

the study of combined annotations. While we are unaware
of any other work that attempts a general approach at this
problem, there are certainly cases in which the combination
of specific annotation domains has been addressed in some
detail. Most notably the interaction of transaction time,
ATt, valid time ATv and the bag semiring N has been thor-
oughly worked out [21] in order to deal with the practical
issues of having temporal annotations on SQL, which is al-
ready equipped with bag semantics. Interestingly the depen-
dency graph adopted appears to be {ATt 
 N ,ATv 
 N}.
Another place in which combined annotations figure is the
study of belief databases [15]. Here the authors study chains
of beliefs such as “a believes that b believes that c believes
. . . ”. The chains have varying lengths, but this can easily



be simulated in our model by padding shorter chains with
the top element of the domain – meaning “everybody be-
lieves. . . ”. Recently, in [2], semiring provenance has been
extended for aggregate queries; this approach is, on the face
of it, quite different with ours, but there may be a useful
connection.

While this paper highlight the problem of combined an-
notations, the next step is to develop a more comprehensive
theory of this topic. Some possible extensions are listed be-
low.

• We have concentrated on the principles of combined
annotations and their normalization. It would be use-
ful to have general complexity bounds for containment
and equivalence. While the normalization process is
exponential in the general case, there are numerous
special cases in which the existential normal form is
itself small, or can be compactly represented.

• Recently several extensions and applications of the orig-
inal work [18] have been proposed, including [16], where
the algebra RA+

K has been extended with a differ-
ence operator, and [22, 7], where a similar model has
been applied to inference rules of Semantic Web lan-
guage RDF(S). In these cases the semiring model has
been augmented with additional axioms. Can the same
ideas be applied to these models?

• Consider a pair in a combined annotation, such that
one of its components is 0. One can argue that such
a pair has no real meaning and may be removed from
the annotation safely. In this paper we turned a blind
eye to this case. It may be appropriate to give this
case special treatment.
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APPENDIX
In the appendix we give proofs of the propositions and theorems of the paper. Many of them are based on the results of
Sec. 6, which are however proved further in this appendix.

Lemma 1. Let all the semirings in K be dl-semirings. Let λ and µ be combined annotations such that µ is in e.n.f. and
λ � µ. Then for each vector (u1, . . . , un) ∈ λ there exists a vector (v1, . . . , vn) ∈ µ such that (u1, . . . , un) E (v1, . . . , vn).

Proof. Since µ is in e.n.f. it is clear that λ �∗ µ. Hence by the definition of e.n.f we conclude that (u1, . . . , un) E
(v1, . . . , vn).

Proposition 1. For combined annotations λ and µ over K = {K1,K2} such that K1 and K2 are dependent l-semirings
and the underlying lattices are distributive, the following are equivalent:

(1) λ � µ,
(2) for every value w ∈ K1 it holds that

⊔
κ′∈Cov(λ,w)

 l

(u1,u2)∈κ′
u2

 E ⊔
κ′′∈Cov(µ,w)

 l

(v1,v2)∈κ′′
v2

 .

Proof. (1) ⇒ (2). Since E is reflexive and transitive, it is valid to consider only the case when λ �∗ µ. However, for
any w replacing vectors (u1, u2), (v1, v2) in λ with a vector (w1, w2) with properties given in Def. 4 clearly may only increase

(w.r.t. E) the value of
⊔
κ′∈Cov(λ,w)

(d
(u1,u2)∈κ′ u2

)
. All the more it can be concluded about adding there the vectors from

µ′ (which are not in λ′).
(2)⇒ (1). Note that in the following proofs of Theor. 2 and Prop. 4 (as well as Lemma 1) the requirement for the l-semirings
K1, . . . ,K2 to be dl-semirings is redundant and only the destributivity of u over t is used. Hence, the results of Theor. 2
and Prop. 4 are valid also for the set K = {K1,K2} of this proposition. Thereby, having the first part proved, without lost of
generality we can assume that λ and µ are in e.n.f. But then the statement is immediately following from Lemma 1.

Proposition 2. Let all the annotation domains in K be dl-semirings. Then the equivalence ∼ is congruent over the ⊕ and
⊗ operations, i.e., if λ ∼ λ′ and µ ∼ µ′ over 
 then λ⊕ µ ∼ λ′ ⊕ µ′ and λ⊗ µ ∼ λ′ ⊗ µ′.

Proof. Note, that all the conditions of Theor. 2 and Prop. 4 holds. It means that it is enough to show that if λ′ is obtained
from λ by one step of the normalization algorithm, then

λ⊕ µ ∼ λ′ ⊕ µ and λ⊗ µ ∼ λ′ ⊗ µ. (1)

As it was already noted, in l-semirings the natural order E is compatible with ⊕ and ⊗. It means that (1) clearly holds for
every step of Red. Hence, we only need to check it for a step of Expand, i.e., for the case when λ′ = λ∪{(u1�I

1v1, . . . , un�I
nvn)}

for some independent set I and vectors (u1, . . . , un), (v1, . . . , vn) from λ (the operation �I
i is defined in Sec. 6).

We will check only the first expression of (1), and the proof of the second one is absolutely the same. The difference between
the left and the right parts of the first expression is only that the right one for any (w1, . . . , wn) ∈ µ and J *
 contains vector

(u1 �I
1 v1, . . . , un �I

n vn)⊕J (w1, . . . , wn) =
((u1 �I

1 v1) ◦1 w1, . . . , (un �I
n vn) ◦n wn)

(2)

but the left one not. (Here all ◦i correspond to J.) Hence it is enough to show that every such vector is smaller (w.r.t. E)
than a vector obtained by one step of Expand running on λ⊕ µ. Indeed, consider the vectors

(u1, . . . , un)⊕I (w1, . . . , wn) and (v1, . . . , vn)⊕I (w1, . . . , wn)

from λ⊕ µ. Applying the step of Expand for the independent set J to them we got the vector

((u1 ◦1 w1)�I
1 (v1 ◦1 w1), . . . , ((un ◦ wn)�I

n (vn ◦n wn)).

We claim, that this vector is greater than the vector in (2), i.e., for every i it holds that

(ui �I
i vi) ◦i wi E (ui ◦1 wi)�I

1 (vi ◦i wi). (3)

Indeed, we have 4 options:

1. if i ∈ I and i ∈ J then �I
i = t, ◦i = ⊕ and (3) holds by the distributivity of ⊕ over t;

2. if i ∈ I but i /∈ J then �I
i = t, ◦i = u and (3) holds by the distributivity of u over t;

3. if i /∈ I but i ∈ J then �I
i = u, ◦i = ⊕ and (3) holds by the compatibility of ⊕ with E;

4. if i /∈ I and i /∈ J then �I
i = u, ◦i = u and (3) holds by the idempotence of u.

Theorem 1. Let K be a set of dl-semirings and 
 be an ad-graph. Then the algebra

C∼[K] = 〈C∼[K],⊕,⊗, 0, 1〉

forms a semiring.



Proof. Straightforward: the commutativity of ⊕ and ⊗ follows from commutativity of operations in the source semirings;
the associativity of them and the distributivity are the properties of ad-graphs; the neutrality of 0 and 1 and the annihilation
of 0 are trivial.

Theorem 2. Let all the semirings in K be dl-semirings. Then any combined annotation over a dependency graph 
 has
a unique equivalent one in e.n.f.

Proof. By the following Prop. 4 we have that for every combined annotation λ there exists an equivalent one Norm(λ)
which is in e.n.f. Hence, we only need to prove that if combined annotations λ and µ are equivalent and in e.n.f. then
λ = µ. Applying Lemma 1 twice, we have that for each vector (u1, . . . , un) ∈ λ there exists a vector (v1, . . . , vn) ∈ µ and a
vector (u′1, . . . , u

′
n) ∈ λ such that (u1, . . . , un) E (v1, . . . , vn) E (u′1, . . . , u

′
n). Since λ is an antichain, we can conclude that

(u1, . . . , un) = (v1, . . . , vn) = (u′1, . . . , u
′
n), i.e., λ ⊆ µ. The same way we can prove that λ ⊇ µ. It means that λ = µ.

Proposition 3. If K consists of two dependent infinite boolean algebras, then for every number N there exists a combined
annotation λ over K with a polynomial in N number of elements, such that its e.n.f. contains O(2N ) elements.

Proof. For convenience, let the elements of K be two copies B′ and B′′ of the same boolean algebra B. Let S be a set
of N pairwise nonintersecting elements from B. Consider the annotation {({x}, {y}) | x, y ∈ S andx 6= y}. Clearly, its e.n.f.
contain O(2N ) elements.

Proposition 4. Let K be a set of dl-semirings. Then for any combined annotation λ over K
(1) the normalization algorithm stops;
(2) Norm(λ) is a combined annotation in the e.n.f.;
(3) λ ∼ Norm(λ).

Proof. To prove that the algorithm stops notice, that for every vector (u1, . . . , un) which is added to λ during a run of
the Expand function, all the annotations vi are t,u-combinations of annotations in the input combined annotation. By the
distributivity laws of the underlying lattices of the semirings, every such t,u-combination can be converted to a disjunction
of conjuncts such that all the conjuncts are different and all elements of a conjunct are different as well. The input combined
annotation is finite by the definition, which means that there are only finitely many different vectors which can be added to
λ during a run of the algorithm. It means that only finitely many iterations of the loop in Expand are possible. The function
Red always stops by its form. Hence the normalization algorithm also always stops.

The proof that Norm(λ) is a combined annotation in normal form is strait forward. It is a finite set by previous statement of
this theorem, which means that it is a combined annotation. Also, every pair of vectors (u1, . . . , un), (v1, . . . , vn) in Norm(λ)
must be processed in Expand(λ) during a run of the algorithm. Hence, for every independent set I the combined annotation
Norm(λ) contains the vector (w1, . . . , wn) such that (u1 �I

1 v1, . . . , un �I
n vn) E (w1, . . . , wn), i.e., the first requirement of

the definition of e.n.f. holds. Finally, Norm(λ) is an antichain, since a result of Red is always an antichain, i.e., the second
requirement also holds.

To proof that λ ∼ Norm(λ) we need to show that every modification of λ during a run of the algorithm does not change its
equivalence class. First, Red(λ) ∼ λ by the property of the equivalence mentioned just after its definition. Hence, we need to
show that Expand(λ) ∼ λ, i.e., for every vectors (u1, . . . , un) and (v1, . . . , vn), combined annotation λ′ and every independent
set I *
 it holds that

({(u1, . . . , un), (v1, . . . , vn), (u1 �I
1 v1, . . . , un �I

n vn)} ∪ λ′) ∼ ({(u1, . . . , un), (v1, . . . , vn)} ∪ λ′).

The inequality

({(u1, . . . , un), (v1, . . . , vn), (u1 �I
1 v1, . . . , un �I

n vn)} ∪ λ′) � ({(u1, . . . , un), (v1, . . . , vn)} ∪ λ′),

holds by the above-mentioned fact that for every µ and ν we have µ ∪ ν � µ. Hence, we only need to prove that

({(u1, . . . , un), (v1, . . . , vn), (u1 �I
1 v1, . . . , un �I

n vn)} ∪ λ′) � ({(u1, . . . , un), (v1, . . . , vn)} ∪ λ′). (4)

We will need some extra notation:

- let (p1, . . . , pn) and (q1, . . . , qn) be vectors defined as pi = ui and qi = vi if i ∈ I, and pi = qi = ui u vi otherwise;

- let λ′′ = λ′ ∪ {(u1, . . . , un), (v1, . . . , vn)}.
We will prove (4) by the following steps:

{(u1, . . . , un), (v1, . . . , vn), (u1 �I
1 v1, . . . , un �I

n vn)} ∪ λ′ ∼
{(p1, . . . , pn), (q1, . . . , qn), (u1 �I

1 v1, . . . , un �I
n vn)} ∪ λ′′ �∗ (∗)

{(p1, . . . , pn), (q1, . . . , qn)} ∪ λ′′ ∼
{(u1, . . . , un), (v1, . . . , vn)} ∪ λ′.

The first and the last equivalences hold since (p1, . . . , pn) E (u1, . . . , un) and (q1, . . . , qn) E (v1, . . . , vn), which means that we
can safely add and remove these vectors by the properties of the equivalence. The inequality (*) holds by the definition of
�∗.

Proposition 5. Given two combined annotations λ and µ over a dependency graph 
 in e.n.f. we have λ � µ iff for each
vector (u1, . . . , un) from λ there exists a vector (v1, . . . , vn) from µ such that (u1, . . . , un) E (v1, . . . , vn).

Proof. This proposition immediately follows from Lemma 1.
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