
Provenance Semirings

Todd J. Green
tjgreen@cis.upenn.edu

Grigoris Karvounarakis
gkarvoun@cis.upenn.edu

Val Tannen
val@cis.upenn.edu

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104, USA

ABSTRACT
We show that relational algebra calculations for incomplete
databases, probabilistic databases, bag semantics and why-
provenance are particular cases of the same general algo-
rithms involving semirings. This further suggests a com-
prehensive provenance representation that uses semirings of
polynomials. We extend these considerations to datalog and
semirings of formal power series. We give algorithms for
datalog provenance calculation as well as datalog evaluation
for incomplete and probabilistic databases. Finally, we show
that for some semirings containment of conjunctive queries
is the same as for standard set semantics.

Categories and Subject Descriptors
H.2.1 [Database Management]: Data Models

General Terms
Theory, Algorithms

Keywords
Data provenance, data lineage, incomplete databases, prob-
abilistic databases, semirings, datalog, formal power series

1. INTRODUCTION
Several forms of annotated relations have appeared in var-

ious contexts in the literature. Query answering in these
settings involves generalizing the relational algebra (RA) to
perform corresponding operations on the annotations.

The seminal paper in incomplete databases [19] gener-
alized RA to c-tables, where relations are annotated with
Boolean formulas. In probabilistic databases, [17] and [33]
generalized RA to event tables, also a form of annotated
relations. In data warehousing, [12] and [13] compute lin-
eages for tuples in the output of queries, in effect general-
izing RA to computations on relations annotated with sets
of contributing tuples. Finally, RA on bag semantics can be
viewed as a generalization to annotated relations, where a
tuple’s annotation is a number representing its multiplicity.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’07, June 11–14, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-685-1/07/0006 ...$5.00.

We observe that in all four cases, the calculations with an-
notations are strikingly similar. This suggests looking for an
algebraic structure on annotations that captures the above
as particular cases. We propose using commutative semir-
ings for this purpose. In fact, we can show that the laws of
commutative semirings are forced by certain expected iden-
tities in RA. Having identified commutative semirings as
the right algebraic structure, we argue that a symbolic rep-
resentation of semiring calculations is just what is needed to
record, document, and track RA querying from input to out-
put for applications which require rich provenance informa-
tion. It is a standard philosophy in algebra that such sym-
bolic representations form the most general such structure.
In the case of commutative semirings, just as for rings, the
symbolic representation is that of polynomials. We therefore
propose to use polynomials to capture provenance. Next we
look to extend our approach to recursive datalog queries. To
achieve this we combine semirings with fixed point theory.

The contributions of the paper are as follows:

• We introduce K-relations, in which tuples are anno-
tated (tagged) with elements from K. We define a gen-
eralized positive algebra on K-relations and argue that
K must be a commutative semiring (Section 3).

• For provenance semirings we propose polynomials
with integer coefficients, and we show that positive
algebra semantics for any commutative semirings fac-
tors through the provenance semantics (Section 4).

• We extend these results to datalog queries by consid-
ering semirings with fixed points (Section 5).

• For the (possibly infinite) provenance in datalog query
answers we propose semirings of formal power series
that are shown to be generated by finite algebraic
systems of fixed point equations (Section 6).

• We give algorithms for deciding the finiteness of these
formal power series, for computing them when finite,
and for computing the coefficient of an arbitrary mono-
mial otherwise (Section 7).

• We show how to specialize our algorithms for com-
puting full datalog answers when K is a finite dis-
tributive lattice, in particular for incomplete and
probabilistic databases (Section 8).

• We consider query containment wrt K-relation se-
mantics and we show that for unions of conjunctive
queries and when K is a distributive lattice, query

a b c

a b c ?
d b e ?
f g e ?

a b c

a b c b1

d b e b2

f g e b3

(a) (b)

n
∅, a c , d e , f e ,

a c
a e
d c
d e

,
d e
f e

,
a c
f e

,

a c
a e
d c
d e
f e

o

(c)

Figure 1: A maybe-table and a query result

containment is the same as that given by standard set
semantics. (Section 9).

2. QUERIES ON ANNOTATED RELATIONS
We motivate our study by considering three important ex-

amples of query answering on annotated relations and high-
light the similarities between them.

The first example comes from the study of incomplete
databases, where a simple representation system is the maybe-
table [30, 18], in which optional tuples are annotated with a
‘?’, as in the example of Figure 1(a). Such a table represents
a set of possible worlds, and the answer to a query over such
a table is the set of instances obtained by evaluating the
query over each possible world. Thus, given a query like

q(R)
def
= πac

`
πabR ! πbcR ∪ πacR ! πbcR

´

the query result is the set of possible worlds shown in Fig-
ure 1(c). Unfortunately, this set of possible worlds cannot
itself be represented by a maybe-table, intuitively because
whenever the tuples (a, e) and (d, c) appear, then so do (a, c)
and (d, e), and maybe-tables cannot represent such a depen-
dency.

To overcome such limitations, Imielinski and Lipski [19]
introduced c-tables, where tuples are annotated with Boolean
formulas called conditions. A maybe-table is a simple kind
of c-table, where the annotations are distinct Boolean vari-
ables, as shown in Figure 1(b). In contrast to weaker rep-
resentation systems, c-tables are expressive enough to be
closed under RA queries, and the main result of [19] is an
algorithm for answering RA queries on c-tables, producing
another c-table as a result. On our example, this algorithm
produces the c-table shown in Figure 2(a), which can be
simplified to the c-table shown in Figure 2(b); this c-table
represents exactly the set of possible worlds shown in Fig-
ure 1(c).

Another kind of table with annotations is a multiset or bag.
In this case, the annotations are natural numbers which rep-
resent the multiplicity of the tuple in the multiset. (A tuple
not listed in the table has multiplicity 0.) Query answering
on such tables involves calculating not just the tuples in the
output, but also their multiplicities.

For example, consider the multiset shown in Figure 3(a).
Then q(R), where q is the same query from before, is the
multiset shown in Figure 3(b). Note that for projection and
union we add multiplicities while for join we multiply them.
There is a striking similarity between the arithmetic calcula-

a c

a c (b1 ∧ b1) ∨ (b1 ∧ b1)
a e b1 ∧ b2

d c b1 ∧ b2

d e (b2 ∧ b2) ∨ (b2 ∧ b2) ∨ (b2 ∧ b3)
f e (b3 ∧ b3) ∨ (b3 ∧ b3) ∨ (b2 ∧ b3)

a c

a c b1

a e b1 ∧ b2

d c b1 ∧ b2

d e b2

f e b3

(a) (b)

Figure 2: Result of Imielinski-Lipski computation

a b c

a b c 2
d b e 5
f g e 1

a c

a c 2 · 2 + 2 · 2 = 8
a e 2 · 5 = 10
d c 2 · 5 = 10
d e 5 · 5 + 5 · 5 + 5 · 1 = 55
f e 1 · 1 + 1 · 1 + 5 · 1 = 7

(a) (b)

Figure 3: Bag semantics example

tions we do here for multisets, and the Boolean calculations
for the c-table.

A third example comes from the study of probabilistic
databases, where tuples are associated with values from [0, 1]
which represent the probability that the tuple is present in
the database. Answering queries over probabilistic tables re-
quires computing the correct probabilities for tuples in the
output. To do this, Fuhr and Röllecke [17] and Zimányi [33]
introduced event tables, where tuples are annotated with
probabilistic events, and they gave a query answering algo-
rithm for computing the events associated with tuples in the
query output.1

Figure 4(a) shows an example of an event table with as-
sociated event probabilities (e.g., x represents the event that
(a, b, c) appears in the instance, and x,y, z are assumed in-
dependent). Considering again the same query q as above,
the Fuhr-Rölleke-Zimányi query answering algorithm pro-
duces the event table shown in Figure 4(b). Note again the
similarity between this table and the example earlier with c-
tables. The probabilities of tuples in the output of the query
can be computed from this table using the independence of
x and y.

3. POSITIVE RELATIONAL ALGEBRA
In this section we attempt to unify the examples above

by considering generalized relations in which the tuples are
annotated (tagged) with information of various kinds. Then,
we will define a generalization of the positive relational al-
gebra (RA+) to such tagged-tuple relations. The examples
in Section 2 will turn out to be particular cases.

We use here the named perspective [1] of the relational
model in which tuples are functions t : U → D with U a
finite set of attributes and D a domain of values. We fix

1The Fuhr-Röllecke-Zimányi algorithm is a general-purpose
intensional algorithm. Dalvi and Suciu [14] give a sound
and complete algorithm which returns a safe query plan, if
one exists, which may be used to answer the query correctly
via a more efficient extensional algorithm. Their results do
not apply to our example query.

a b c

a b c x
d b e y
f g e z

E Pr
x 0.6
y 0.5
z 0.1

a c

a c x
a e x ∩ y
d c x ∩ y
d e y
f e z

(a) (b)

Figure 4: Probabilistic example

the domain D for the time being and we denote the set of
all such U -tuples by U -Tup. (Usual) relations over U are
subsets of U -Tup.

A notationally convenient way of working with tagged-
tuple relations is to model tagging by a function on all pos-
sible tuples, with those tuples not considered to be “in”
the relation tagged with a special value. For example, the
usual set-theoretic relations correspond to functions that
map U -Tup to B = {true, false} with the tuples in the re-
lation tagged by true and those not in the relation tagged
by false.

Definition 3.1. Let K be a set containing a distinguished
element 0. A K-relation over a finite set of attributes U
is a function R : U -Tup → K such that its support defined

by supp(R)
def
= {t | R(t) '= 0} is finite.

In generalizing RA+ we will need to assume more struc-
ture on the set of tags. To deal with selection we assume
that the set K contains two distinct values 0 '= 1 which de-
note “out of” and “in” the relation, respectively. To deal
with union and projection and therefore to combine differ-
ent tags of the same tuple into one tag we assume that K
is equipped with a binary operation “+”. To deal with nat-
ural join (hence intersection and selection) and therefore to
combine the tags of joinable tuples we assume that K is
equipped with another binary operation “·”.

Definition 3.2. Let (K, +, ·, 0, 1) be an algebraic struc-
ture with two binary operations and two distinguished ele-
ments. The operations of the positive algebra are defined
as follows:

empty relation For any set of attributes U , there is ∅ :
U -Tup → K such that ∅(t) = 0.

union If R1, R2 : U -Tup → K then R1 ∪ R2 : U -Tup → K
is defined by

(R1 ∪R2)(t)
def
= R1(t) + R2(t)

projection If R : U -Tup → K and V ⊆ U then πV R :
V -Tup → K is defined by

(πV R)(t)
def
=

X

t=t′ on V and R(t′) !=0

R(t′)

(here t = t′ on V means t′ is a U-tuple whose restric-
tion to V is the same as the V -tuple t; note also that
the sum is finite since R has finite support)

selection If R : U -Tup → K and the selection predicate
P maps each U-tuple to either 0 or 1 then σPR :
U -Tup → K is defined by

(σPR)(t)
def
= R(t) ·P(t)

Which {0, 1}-valued functions are used as selection pred-
icates is left unspecified, except that we assume that
false—the constantly 0 predicate, and true—the con-
stantly 1 predicate, are always available.

natural join If Ri : Ui-Tup → K i = 1, 2 then R1 ! R2 is
the K-relation over U1 ∪ U2 defined by

(R1 ! R2)(t)
def
= R1(t1) · R2(t2)

where t1 = t on U1 and t2 = t on U2 (recall that t is a
U1 ∪ U2-tuple).

renaming If R : U -Tup → K and β : U → U ′ is a bijection
then ρβR is a K-relation over U ′ defined by

(ρβR)(t)
def
= R(t ◦ β)

Proposition 3.3. The operations of RA+ preserve the
finiteness of supports therefore they map K-relations to K-
relations. Hence, Definition 3.2 gives us an algebra on K-
relations.

This definition generalizes the definitions of RA+ for the
motivating examples we saw. Indeed, for (B,∨,∧, false, true)
we obtain the usualRA+ with set semantics. For (N, +, ·, 0, 1)
it is RA+ with bag semantics.

For the Imielinski-Lipski algebra on c-tables we consider
the set of Boolean expressions over some set B of variables
which are positive, i.e., they involve only disjunction, con-
junction, and constants for true and false. Then we iden-
tify those expressions that yield the same truth-value for
all boolean assignments of the variables in B.2 Denoting
by PosBool(B) the result and applying Definition 3.2 to the
structure (PosBool(B),∨,∧, false, true) produces exactly the
Imielinski-Lipski algebra. Finally, for (P(Ω),∪,∩, ∅, Ω) we
obtain the Fuhr-Rölleke-Zimányi RA+ on event tables.

These four structures are examples of commutative semir-
ings, i.e., algebraic structures (K, +, ·, 0, 1) such that (K, +, 0)
and (K, ·, 1) are commutative monoids, · is distributive over
+ and ∀a, 0 · a = a · 0 = 0. Further evidence for requiring
K to form such a semiring is given by

Proposition 3.4. The following RA identities:

• union is associative, commutative and has identity ∅;

• join is associative, commutative and distributive over
union;

• projections and selections commute with each other as
well as with unions and joins (when applicable);

• σfalse(R) = ∅ and σtrue(R) = R.

hold for the positive algebra on K-relations if and only if
(K, +, ·, 0, 1) is a commutative semiring.

Glaringly absent from the list of relational identities are
the idempotence of union and of (self-)join. Indeed, these
fail for the bag semantics, an important particular case of
our general treatment.

Any function h : K → K′ can be used to transform
K-relations to K′-relations simply by applying h to each
2in order to permit simplifications; it turns out that this is
the same as transforming using the axioms of distributive
lattices [11]

a b c

a b c p
d b e r
f g e s

a c

a c {p}
a e {p, r}
d c {p, r}
d e {r, s}
f e {r, s}

a c

a c 2p2

a e pr
d c pr
d e 2r2 + rs
f e 2s2 + rs

(a) (b) (c)

Figure 5: Why-prov. and provenance polynomials

tag (note that the support may shrink but never increase).
Abusing the notation a bit we denote the resulting trans-
formation from K-relations to K′-relations also by h. The
RA operations we have defined work nicely with semiring
structures:

Proposition 3.5. Let h : K → K′ and assume that
K, K′ are commutative semirings. The transformation given
by h from K-relations to K′-relations commutes with any
RA+ query (for queries of one argument) q(h(R)) = h(q(R))
if and only if h is a semiring homomorphism.

4. POLYNOMIALS FOR PROVENANCE
Lineage/why-provenance was defined in [12, 13, 6] as a

way of relating the tuples in a query output to the tuples
in the query input that “contribute” to them. The why-
provenance of a tuple t in a query output is in fact the set
of all contributing input tuples.

Computing the why-provenance for queries in RA+ turns
out to be exactly Definition 3.2 for the semiring
(P(X),∪,∪, ∅, ∅) where X consists of the ids of the tuples
in the input instance. For example, we consider the same
tuples as in relation R used in the examples of Section 2
but now we tag them with their own ids p,r,s, as shown in
Figure 5(a). The resulting R can be seen as a P({p, r, s})-
relation by replacing p with {p}, etc. Applying the query q
from Section 2 to R we obtain according to Definition 3.2
the P({p, r, s})-relation shown in Figure 5(b).

This example illustrates the limitations of why-provenance
(also recognized in [8]). For example, in the query result in
Figure 5(b) (f, e) and (d, e) have the same why-provenance,
the input tuples with id r and s. However, the query can
also calculate (f, e) from s alone and (d, e) from r alone. In
a provenance application in which one of r or s is perhaps
less trusted or less usable than the other the effect can be
different on (f, e) than on (d, e) and this cannot be detected
by why-provenance. It seems that we need to know not just
which input tuples contribute but also how they contribute.3

On the other hand, by using the different operations of the
semiring, Definition 3.2 appears to fully “document” how an
output tuple is produced. To record the documentation as
tuple tags we need to use a semiring of symbolic expressions.
In the case of semirings, like in ring theory, these are the
polynomials.

Definition 4.1. Let X be the set of tuple ids of a (usual)
database instance I. The positive algebra provenance
semiring for I is the semiring of polynomials with variables

3In contrast to why-provenance, the notion of provenance
we propose could justifiably be called how-provenance.

(a.k.a. indeterminates) from X and coefficients from N, with
the operations defined as usual4: (N[X], +, ·, 0, 1).

Example of provenance computation. Start again from
the relation R in Figure 5(a) in which tuples are tagged with
their own id. R can be seen as an N[p, r, s]-relation. Apply-
ing to R the query q from Section 2 and doing the calcu-
lations in the provenance semiring we obtain the N[p, r, s]-
relation shown in Figure 5(c). The provenance of (f, e) is
2s2 + rs which can be “read” as follows: (f, e) is computed
by q in three different ways; two of them use the input tuple
s twice; the third uses input tuples r and s. We also see
that the provenance of (d, e) is different and we see how it
is different! "

The following standard property of polynomials captures
the intuition that N[X] is as “general” as any semiring:

Proposition 4.2. Let K be a commutative semiring and
X a set of variables. For any valuation v : X → K there
exists a unique homomorphism of semirings

Evalv : N[X] → K

such that for the one-variable monomials we have Evalv(x) =
v(x).

As the notation suggests, Evalv(P) evaluates the polyno-
mial P in K given a valuation for its variables. In calcu-
lations with the integer coefficients, na where n ∈ N and
a ∈ K is the sum in K of n copies of a. Note that N is
embedded in K by mapping n to the sum of n copies of 1K .

Using the Eval notation, for any P ∈ N[x1, . . . , xn] and
any K the polynomial function fP : Kn → K is given
by:

fP (a1, . . . , an)
def
= Evalv(P) v(xi) = ai, i = 1..n

Putting together Propositions 3.5 and 4.2 we obtain The-
orem 4.3 below, a conceptually important fact that says,
informally, that the semantics of RA+ on K-relations for
any semiring K factors through the semantics of the same
in provenance semirings.

Indeed, let K be a commutative semiring, let R be a K-
relation, and let X be the set of tuple ids of the tuples in
supp(R). There is an obvious valuation v : X → K that
associates to a tuple id the tag of that tuple in R.

We associate to R an “abstractly tagged” version, denoted
R̄, which is an X ∪ {0}-relation. R̄ is such that supp(R̄) =
supp(R) and the tuples in supp(R̄) are tagged by their own
tuple id. For example, in Figure 7(d) we show an abstractly-
tagged version of the relation in Figure 7(b). Note that as
an X ∪ {0}-relation, R̄ is a particular kind of N[X]-relation.

To simplify notation we state the theorem for queries of
one argument (but the generalization is immediate):

Theorem 4.3. For any RA+ query q we have

q(R) = Evalv ◦ q(R̄)

To illustrate an instance of this theorem, consider the prove-
nance polynomial 2r2 + rs of the tuple (d, e) in Figure 5(c).
Evaluating it in N for p = 2, r = 5, s = 1 we get 55 which is
indeed the multiplicity of (d, e) in Figure 3(a).
4These are polynomials in commutative variables so their
operations are the same as in middle-school algebra, except
that subtraction is not allowed.

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will suffice
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a ≤ b
def⇔ ∃x a+

x = b. When ≤ is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an ω-complete semiring if it is naturally
ordered and ≤ is such that ω-chains x0 ≤ x1 ≤ · · · ≤ xn ≤
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n∈N
an

def
= sup

m∈N
(

mX

i=0

ai)

Note that if ∃N s.t. ∀n > N, an = 0 then
P

n∈N an =PN
i=0 ai. All the semiring examples we gave so far are ω-

complete with the exception of N and N[X].
An ω-continuous semiring is an ω-complete semiring in

which the operations + and · are ω-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative ω-continuous semirings:

• (B,∨,∧, false, true)

• (N∞, +, ·, 0, 1) where we add ∞ to the natural num-
bers and define ∞ + n = n + ∞ = ∞ and ∞ · n =
n ·∞ = ∞ except for ∞ · 0 = 0 ·∞ = 0. We can think
of N∞ as the ω-continuous “completion” of N.

• (PosBool(B),∨,∧, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B
finite makes PosBool(B) finite, hence ω-continuous.

• (P(Ω),∪,∩, ∅, Ω), used for event tables which is also
an example of distributive lattice.

• (N∞, min, +,∞, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
ω-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

τ yields t

“ Y

t′∈leaves(τ)

R(t′)
”

where τ ranges over all q-derivation trees for t and t′ ranges
over all the leaves of τ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) '= 0
and let t′ be a tuple s.t. q(R)(t′) '= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t′ ∈ q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N∞-relation and N∞ is ω-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q′ be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q′ produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

Q(x, y) :- R(x, y)

Q(x, y) :- Q(x, z),
Q(z, y)

a b 2
a c 3
c b 2
b d 1
d d 1

a b 8
a c 3
c b 2
b d ∞
d d ∞
a d ∞

(a) (b) (c)

a b m
a c n
c b p
b d r
d d s

a b x
a c y
c b z
b d u
d d v
a d w

x = m + yz
y = n
z = p
u = r + uv
v = s + v2

w = xu + wv

(d) (e) (f)

Figure 7: Datalog example

Proposition 5.4. For any datalog query q and any B-
relation R, supp(q(R)) is the same as the result of applying
q to the standard relation supp(R).

The definition of datalog semantics given above is not so
useful computationally. However, we can think of it as the
proof-theoretic definition, and as with standard datalog, it
turns out that there is an equivalent fixpoint-theoretic defi-
nition that is much more workable.

Intuitively, this involves representing the possibly infinite
sum of products above as a system of fixpoint equations that
reflect all the ways that a tuple can be produced as a result
of applying the immediate consequence operator Tq (for a
datalog query q) on other tuples. Since such an immediate
consequence can involve other tuples in idb relations, that
may themselves have infinitely many derivations, we intro-
duce a new variable for each tuple in the idb relation and
use that variable to refer to that tuple when calculating its
immediate consequences. Thus, for every tuple there is an
equation between the variable for that tuple and a polyno-
mial over all the variables.

To make this precise we consider polynomials with coef-
ficients in an arbitrary commutative semiring K. If the set
of variables is X we denote the set of polynomials by K[X].
We have already used N[X] for provenance but K[X] also
forms a commutative semiring. We saw in Section 4 that
because N can be embedded in any semiring K the polyno-
mials in N[X] define polynomial functions over K. Similarly,
if X = {x1, . . . , xn} then any polynomial P ∈ K[X] defines
a polynomial function fP : Kn → K. Most importantly, if
K is ω-continuous then fP is ω-continuous in each argument.

Definition 5.5. Let K be a commutative ω-continuous
semiring. An algebraic system over K with variables X =
{x1, . . . , xn} consists of a list of polynomials P1, . . . , Pn ∈
K[X] and is written

x1 = P1(x1, . . . , xn)
· · ·

xn = Pn(x1, . . . , xn)

Together, fP1 , . . . , fPn define a function fP : Kn → Kn.
Kn has a component-wise commutative ω-continuous semir-
ing structure such that fP is ω-continuous. Hence, the least
fixed point

lfp(fP) = sup
m∈N

fm
P (0, . . . , 0)

exists, and we call it the solution of the algebraic system
above.

As an example, consider the one-variable equation x =
ax + b with a, b ∈ K. This is closely related to regular
language theory and its solution is x = a∗b where

a∗
def
= 1 + a + a2 + a3 + · · ·

For example, in N∞ we have 1∗ = ∞ while in PosBool(B)
we have e∗ = true for any e.

Consider a datalog program q and to simplify notation
assume just one edb predicate R and one idb-and-output
predicate Q. Given an edb K-relation of finite support R
we can effectively construct an algebraic system over K as
follows. Denote by Q also the K-relation that is the output
of the program and let Q̄ be the abstractly-tagged (as in
Theorem 4.3) version of Q where X is the set of ids of the
tuples in supp(Q). Since Q̄ is a X ∪ {0}-relation and R is
a K-relation both can be seen also as K[X]-relations. The
immediate consequence operator Tq is in fact a union of con-
junctive queries, hence Definition 3.2 shows how to calculate
effectively Tq(R, Q̄) as a K[X]-relation of finite support. By
equating the tags of Q̄ with those of Tq(R, Q̄) we obtain the
promised algebraic system. We will denote this system as
Q̄ = Tq(R, Q̄) (although it only involves the tags of these
relations).

Theorem 5.6. With the notation above, for any tuple t,
the tag Q(t) given by Definition 5.1, when not 0, equals the
component of the solution (Definition 5.5) of the algebraic
system Q̄ = Tq(R, Q̄) corresponding to the id of t.

To illustrate with an example, consider again the datalog
program in Figure 7(a) applied to the same N-relation, R
shown in Figure 7(b). In Figure 7(e) we have the abstractly-
tagged version of the output relation, Q̄ in which the tuples
are tagged with their own ids. The corresponding algebraic
system is the one obtained from Figure 7(f) by replacing
m = 2, n = 3, p = 2, r = 1, s = 1. (Note that Tq(R, Q̄) =
R ∪ Q̄ ! Q̄.) Calculating its solution we get after two fixed
point iterations x = 8,y = 3, z = 2,u = 2,v = 2,w = 2. In
further iterations x,y, z remain the same while u,v,w grow
unboundedly (in Section 7 we show how unbounded growth
can be detected). Hence the solution is the one shown in Fig-
ure 7(c).

Note that semiring homomorphisms are monotone with
respect to the natural order. However, to work well with
the datalog semantics more is needed.

Proposition 5.7. Let K, K′ be commutative ω-continuous
semirings and let h : K → K′ be an ω-continuous semir-
ing homomorphism. Then, the transformation given by h
from K-relations to K′-relations commutes with any data-
log query (for queries of one argument q(h(R)) = h(q(R))).

6. FORMAL POWER SERIES FOR
PROVENANCE

In Section 4 we showed how to use N[X]-relations to cap-
ture an expressive notion of provenance for the tuples in the
output of an RA+ query. However, polynomials will not
suffice for the provenance of tuples in the output of datalog
queries because the semiring N[X] does not define infinite
sums. As with the transition from N to N∞ we wish to

“complete” N[X] to a commutative ω-continuous semiring.
This problem has been tackled in formal language theory
and it led to the study of formal power series [22].

Note that when we try to apply naively Definition 5.1 to
datalog queries on N[X]-relations we encounter two kinds of
infinite summations. First, it is possible that we have to
sum infinitely many distinct monomials. This leads directly
to formal power series. Second, it is possible that we have
to sum infinitely many copies of the same monomial. This
means that we need coefficients from N∞, not just N.

Let X be a set of variables. Denote by X⊕ the set of all
possible monomials over X. For example, if X = {x, y} then
X⊕ = {xmyn | m, n ≥ 0} = {ε, x, y, x2, xy, y2, x3, x2y, . . .}
where ε is the monomial in which both x and y have expo-
nent 0.

Let K be a commutative semiring. A formal power
series with variables from X and coefficients from K is a
mapping that associates to each monomial in X⊕ a coeffi-
cient in K. A formal power series S is traditionally written
as a possibly infinite sum

S =
X

µ∈X⊕

S(µ) µ

and we denote the set of formal power series by K[[X]]. As
with K[X], there is a commutative semiring structure on
K[[X]] given by the usual way of adding and multiplying,
for example

(S1 · S2)(µ) =
X

µ1µ2=µ

S1(µ1) · S2(µ2)

But the real reason we use formal power series is the fact
that if K is ω-continuous then K[[X]] is also ω-continuous
(see [22], for example).

Definition 6.1. Let X be the set of tuple ids of a database
instance I. The datalog provenance semiring for I is the
commutative ω-continuous semiring of formal power series
N∞[[X]].

Let us calculate, using the fixed point semantics, the prove-
nances for the output of the datalog query in Figure 7(a).
We now take as input the relation, call it R̄, in Figure 7(d)
which is the abstractly-tagged (tagged with tuple ids) ver-
sion of the relation R in Figure 7(b). Note that we have two
sets of variables here. The tuple ids of R̄ form one set of
variables and the provenance semiring in which we compute
is N∞[[m, n, p, r, s]]. At the same time, the ids of the tuples
in Q̄ in Figure 7(e) are used as variables in the algebraic
system, whose right-hand sides belong to

N∞[[m, n, p, r, s]][x,y, z,u,v,w]

i.e., they are polynomials in the variables {x,y, z,u,v,w},
with coefficients in the semiring of formal power series
N∞[[m, n, p, r, s]]. The v component of the solution can be
calculated separately:6

v = s + s2 + 2s3 + 5s4 + 14s5 + · · ·

Also, one can see that x = m + np, u = rv∗, w = r(m +
np)(v∗)2. For example the coefficient of rnps3 in the prove-
nance w of Q(a, d) is 5, which means this tuple can be ob-
tained in 5 distinct ways using R(a, c), R(c, b) and R(b, d)
once and R(d, d) three times.
6[9] shows that the coefficient of sn+1 is 2n!

n!(n+1)! .

Algebra provenance, N[X], is embedded in datalog prove-
nance, N∞[X], by regarding polynomials as formal power
series in which all but finitely many coefficients are 0. Here
is the corresponding sanity check:

Proposition 6.2. Let q be an RA+ query (of one argu-
ment, to simplify notation) in which the selection predicates
only test for attribute equality, let q′ be the (non-recursive)
datalog query obtained by standard translation from q and
let R be a N[X]-relation. Modulo the embedding of N[X] in
N∞[X] we have q′(R) = q(R)

Formal power series can be evaluated in commutative
ω-continuous semirings:

Proposition 6.3. Let K be a commutative ω-continuous
semiring and X a set of variables. For any valuation v :
X → K there exists a unique ω-continuous homomorphism
of semirings

Evalv : N∞[[X]] → K

such that for the one-variable monomials we have Evalv(x) =
v(x).

Therefore, just like polynomials, formal power series de-
fine series functions on any commutative ω-continuous
semiring. Finally, we have the analog of Theorem 4.3.

Theorem 6.4. The semantics of datalog on K-relations
for any commutative ω-continuous semiring K factors
through the semantics of the same in provenance semirings
(of formal power series).

Although the coefficients in the provenance series may be
∞, we can characterize exactly when this happens7:

Theorem 6.5. A datalog query q has provenance series
in N[[X]] for some tuple t if and only if the instantiation of
q has no cycle of unit rules (rules whose body consists of a
single idb) s.t. t is part of the cycle (i.e., appears on the
head of one of those unit rules and the body of another) and
t is in the result of q.

7. COMPUTING PROVENANCE SERIES
We show here that several natural questions that one

can ask about the computability of formal power series in
N∞[[X]] can in fact be decided and all finitely representable
information can in fact be computed.

Given a datalog program q and a relational instance I,
consider the formal power series provenance of some tuple
t in the output q(I), i.e., q(I)(t) where the datalog seman-
tics is taken in N∞[[X]] (X is the set of ids of the tuples in
I). We show that it is decidable whether q(I)(t) is in fact
a polynomial in N [X]. The algorithm All-Trees, shown in
Figure 8 (inspired by [28]) decides this for all output tuples
and computes the polynomial when the answer is affirma-
tive.

For an output tuple t for which the answer given by al-
gorithm All-Trees is negative, we can use Theorem 6.5 to
decide whether q(I)(t) is in N[[X]]. The remaining ques-
tion is whether q(I)(t) is in N∞[X], which we can decide by

7In this theorem, the instantiation of a datalog query is the
set of rules obtained by considering all satisfying valuations
for the variables in rules of q.

Algorithm All-Trees
Input: query q, instance I
Output: the power series P (t) for every tuple t ∈ q(I)
1. Initialize T← {t() : t ∈ I}
2. Initialize T∞ ← ∅
3. repeat
4. Tν ← T ν

q (T, T∞)
5. for every tree τ ∈ Tν

6. do if any child of root(τ) is in T∞ or any
proper descendant of root(τ) to a node as-
sociated with the same tuple

7. then T∞ ← T∞ ∪ {root(τ)}
8. else T← T ∪ {τ}
9. until nothing added to either T or T∞ in last iteration
10. for every t ∈ q(I)
11. do if t ∈ T∞

12. then P (t) ←∞
13. else P (t) ←

P

τ∈T:
root(τ)=t

` Q
l∈fringe(τ)

l
´

14. return P

Figure 8: Algorithm All-Trees

checking if there is any cycle in the instantiation of the query
involving at least one non-unit rule, s.t. t is part of that cy-
cle; otherwise, q(I)(t) is in N∞[[X]]. In algorithm All-Trees
shown in Figure 8:

• T is the set of derivation trees computed thus far; T∞

is the set of tuples with infinitely many derivations;
fringe(τ) is the bag of labels of leaves of the tree τ .

• T ν
q (T, T∞) = {τ |τ '∈ T ∧ τ ∈ Tq(T) ∧ root(τ) '∈ T∞},

where Tq(T) is the set of trees produced by applying
a rule on tuples in {root(τ) | τ ∈ T} ∪ T∞.

Algorithm All-Trees terminates because at every iteration
only trees which are not there already are produced and
moreover, for every tuple that has infinitely many deriva-
tions, as soon as it is identified and inserted in T∞, no more
trees for it are produced. Note also that by Theorem 6.4 this
algorithm will also give us, in particular, an algorithm for
evaluating datalog queries on bag semantics, just like in [28].

If the answer of algorithm All-Trees for an output tuple t
is negative, we can also use algorithm Monomial-Coefficient ,
shown in Figure 9, to compute the coefficient of a particular
monomial µ in q(I)(t), even when that coefficient is ∞. In
this algorithm:

• M is the set of tuples whose ids appear in µ, a mono-
mial represented as a bag of labels that appear in it;
P∞ is a set of pairs (t, µ), representing tuples t for
which infinite derivation trees whose leaves are equal
to the monomial µ have been found.

• T i
q(T, P∞, µ) = {τ | τ '∈ T ∧ τ ∈ Tq(T) ∧ fringe(τ) ≤

µ∧ (root(τ), m) '∈ P∞}, where Tq(T) is the set of trees
that can be produced by applying a rule on tuples in
{root(τ) | τ ∈ T} ∪{ t | (t, m) ∈ P∞} it, where the
multiplicity of each is the corresponding exponent in
the monomial.

If n is the length of the longest acyclic path of unit rules,
then every n+1 iterations the algorithm Monomial-Coefficient

Algorithm Monomial-Coefficient
Input: query q, monomial µ, tuple t
Output: C, the coefficient of µ in the power series P (t)
1. Initialize T← {t() : t ∈ M}
2. Initialize P∞ ← ∅
3. repeat
4. Ti ← T i

q(T, T∞)
5. for every tree τ ∈ Ti

6. do if for any child tree τ ′ of root(τ),
(root(τ ′), fringe(τ ′)) ∈ P∞ or there is a
chain from root(τ) to a node associated
with the same tuple

7. then P∞ ← P∞∪{(root(τ), fringe(τ))}
8. else T← T ∪ {τ}
9. until nothing added to either T or T∞ in last iteration
10. if (t, µ) ∈ P∞

11. then C ←∞
12. else for every τ ∈ T s.t. root(τ) = t and

fringe(τ) = µ
13. do C ← C + 1
14. return C

Figure 9: Algorithm Monomial-Coefficient

either has produced a tree τ with larger fringe(τ) than the
ones that were combined to produce it, or it has identified
a pair (t′, µ′) whose derivation trees involve a cycle of unit
rules. The algorithm then is guaranteed to terminate, be-
cause for all such tuples t′ with infinitely many derivations,
no trees for t′ with fringe(τ) = µ′ are used in any subsequent
derivations, and moreover, the set of trees τ s.t. τ does not
involve nodes marked as infinite and fringe(τ) ≤ µ is finite.

8. INCOMPLETE / PROBABILISTIC
DATABASES

Theorem 6.4 suggests using algorithm All-Trees for evalu-
ating datalog queries in various semirings. We already noted
in Section 7 that this will work fine for N∞. How about
PosBool(B), P(Ω), and, as a sanity check, B? When algo-
rithm All-Trees returns∞, the evaluation on these semirings
will return a normal value! We show that we can compute
this value in the more general case when the semiring K
is a finite distributive lattice. We do so with some simple
modifications to algorithm All-Trees:

• Redefine T ν
q to take only T as a parameter, and return

all τ in Tq(T) such that for all τ ′ in T, if root(τ) =
root(τ ′), then fringe(τ) < fringe(τ ′).

Thus a derivation tree for a tuple is considered “new” only
when its associated monomial is smaller than any yet seen
for that tuple. This modified algorithm always returns a
polynomial for each tuple. Evaluating these polynomials in
K gives the K-relation output.

The sanity check that for K = B the output tuples get
the tag true is easy to check. For K = PosBool(B), after
also checking that for any valuation v : B → B we have
v(q(R)) = q(v(R)), we get a datalog on boolean c-tables
semantics. This is new for incomplete databases.

In probabilistic databases we restrict ourselves, as usual,
to the case when the domain D is finite, hence the sample
space Ω of all possible instances is finite. K = P(Ω) is a

finite distributive lattice so we get an effective semantics for
datalog on event tables. After checking that the resulting
event tagging a tuple t does in fact say that t is in q(R) for
the random instance R, we conclude that our algorithm also
generalizes that of [16].

9. QUERY CONTAINMENT
Here we present some results about query containment

w.r.t. the general semantics in K-relations.

Definition 9.1. Let K be a naturally ordered commu-
tative semiring and let q1, q2 be two queries defined on K-
relations. We define containment with respect to K-relations
semantics by

q1 2K q2
def⇔ ∀R ∀t q1(R)(t) ≤ q2(R)(t)

When K is B and N we get the usual notions of query con-
tainment with respect to set and bag semantics.

Some simple facts follow immediately. For example if h :
K → K′ is a semiring homomorphism such that h(x) ≤
h(y) ⇒ x ≤ y and q1, q2 are RA+ queries it follows from
Prop. 3.5 that q1 2K′ q2 ⇒ q1 2K q2. If instead h is
a surjective homomorphism then q1 2K q2 ⇒ q1 2K′ q2.
Similarly when K, K′ and h are also ω-continuous and q1, q2

are datalog queries (via Prop. 5.7).
The following result allows us to use the decidability of

containment of unions of conjunctive queries [7, 29].

Theorem 9.2. If K is a distributive lattice then for any
q1, q2 unions of conjunctive queries we have

q1 2K q2 iff q1 2B q2

Proof. (sketch) One direction follows because B can be
homomorphically embedded in K. For the other direction
we use the existence of query body homomorphisms to es-
tablish mappings between monomials of provenance polyno-
mials. Then we apply the factorization theorem (4.3) and
the idempotence and absorption laws of K.

Therefore, if K is a distributive lattice for (unions of)
conjunctive queries containment with respect to K-relation
semantics is decidable by the same procedure as for standard
set semantics. PosBool(B), P(Ω) and the fuzzy semiring are
all distributive lattices. A theorem similar to the one above
is shown in [20] but the class of algebraic structures used
there does not include PosBool(B) or P(Ω) (although it does
include the fuzzy semiring).

10. RELATED WORK
Lineage/why-provenance was introduced in [12, 13, 6],

(the last paper uses a tree data model) but the relation-
ship with [19] was not noticed. The papers on probabilistic
databases [17, 33, 23] note the similarities with [19] but do
not attempt a generalization.

Datalog with bag semantics in which derivation trees are
counted was considered in several papers, among them [25,
26, 27]. The evaluation algorithms presented in these papers
do not terminate if some output tuple has infinite multiplicity.
Datalog on incomplete and on probabilistic databases is con-
sidered in [15, 24], again with non-terminating algorithms.
Later [28] gave an algorithm for detecting infinite multiplicities
in datalog with bag semantics and [16] gave a terminating
algorithm for datalog on probabilistic databases.

Two recent papers on provenance, although independent
of our work, have a closer relationship to our approach. Like
us, [8] identifies the limitations of why-provenance and pro-
poses route-provenance which is also related to derivation
trees. The issue of infinite routes in recursive programs is
avoided by considering only minimal ones. [3] proposes a no-
tion of lineage of tuples for a type of incomplete databases
but does not consider recursive queries. It turns out that we
can also describe the lineage in [3] by means of a special com-
mutative semiring so our approach is more general. More
significantly, we have provided evidence for the statement
“the algorithm in [19] could already compute lineage” rather
than just showing that incompleteness and provenance can
co-exist.

The first attempt at a general theory of relations with an-
notations appears to be [20] where axiomatized label systems
are introduced in order to study containment.

Our paper borrows the machinery of semirings and formal
power series from the theory of formal languages (see [22]
and references in there). For example, (non-commutative)
algebraic systems of equations can be associated to context-
free grammars and the integer coefficients in the formal
power series solutions count the “degree of ambiguity” of
a string in the language [9] (their restriction to grammars
without unit rules inspired our Theorem 6.5).

Context-free grammars have been used in the study of
datalog but mainly chain datalog programs were considered
(e.g., [2]) in order to capture the inherent order in strings.
Closed semirings are used in [31, 10] but only in order to
use Kleene’s regular expression algorithm to optimize special
classes of datalog programs.

We learned with interest that some of what we do is sim-
ilar in spirit with a line of work is AI on constraint satisfac-
tion problems (CSP) [4, 5]. Their constraints over semirings
are in fact the same as our K-relations and the two opera-
tions on constraints correspond indeed to relational join and
projection. CSP solutions are expressed as projection-join
queries in [4] and as Prolog programs in [5]. Computing so-
lutions is the same as the evaluation of join and projection in
Section 3 and [5] also uses fixed points on semirings. There
are some important differences though. The semirings used
in [4, 5] are such that + is idempotent and 1 is a top el-
ement in the resulting order. This rules out our semirings
N, N∞, N[X], N∞[[X]] hence the bag and provenance seman-
tics. 8 More importantly, much of the focus in CSP is in
choosing optimal solutions rather than how these solutions
depend on the constraints.

11. CONCLUSION AND FURTHER WORK
Beyond the technical results, this paper can be regarded

also as arguing that various forms of K-relations, even mul-
tisets, provide coarser forms of provenance while the poly-
nomial and formal power series annotations are, by virtue of
their “universality” (as illustrated by the factorization theo-
rems) the most general form of annotation possible with the
boundaries of semiring structures. This might be a perspec-
tive worth using when, in the future, we search for prove-
nance structures for data models other than relational.

8Another difference is that for datalog semantics we require
our semirings to be ω-continuous while [5] uses the less well-
behaved fixed points given by Tarski’s theorem for mono-
tone operators on complete lattices. However, the semiring
examples [5] appear to be in fact ω-continuous.

Although we only considered boolean c-tables, the results
can be extended to arbitrary c-tables. Further, we would like
to extend Definition 3.2 to include negation, which seems to
require axiomatizing an additional operation akin to “proper
subtraction” in N. Algorithm All-Trees does not immedi-
ately give an effective way to evaluate datalog over the trop-
ical semiring but we conjecture that such a procedure exists.
We also conjecture that containment under bag semantics of
conjunctive or unions of conjunctive queries implies (hence is
equivalent to) containment under N[X]-relation semantics.
This would allow us to transfer to N[X] the undecidability
result in [20].

Although in general database research and AI CSP re-
search sadly tend to ignore each other (witness the original
submission of this paper!), some deep connections have been
exhibited in [21], involving, in particular, conjunctive query
containment. Looking at the relationship between our work
and that of [4, 5] from this perspective might provide inter-
esting results.

Finally, we plan to investigate the application of our ap-
proach to database applications where a fine and detailed
notion of provenance is needed, for example to propagate
information back and forth between databases related by
logical constraints of various kinds.

Acknowledgments We are grateful to Zack Ives for
many useful discussions. We thank Nilesh Dalvi for point-
ing out [20], Jan Chomicki for letting us know about semir-
ings being used in constraint satisfaction and an anonymous
referee for pointing out [5]. The authors were partially sup-
ported by NSF grants IIS 0415810 and IIS 0513778.

12. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.
[2] F. N. Afrati and C. H. Papadimitriou. The parallel

complexity of simple logic programs. J. ACM,
40(4):891–916, 1993.

[3] O. Benjelloun, A. D. Sarma, A. Y. Halevy, and
J. Widom. ULDBs: Databases with uncertainty and
lineage. In VLDB, 2006.

[4] S. Bistarelli, U. Montanari, and F. Rossi.
Semiring-based constraint satisfaction and
optimization. JACM, 44(2):201–236, 1997.

[5] S. Bistarelli, U. Montanari, and F. Rossi.
Semiring-based constraint logic programming: syntax
and semantics. ACM TOPLAS, 23(1):1–29, 2001.

[6] P. Buneman, S. Khanna, and W.-C. Tan. Why and
where: A characterization of data provenance. In
ICDT, 2001.

[7] A. K. Chandra and P. M. Merlin. Optimal
implementation of conjunctive queries in relational
data bases. In STOC, 1977.

[8] L. Chiticariu and W.-C. Tan. Debugging schema
mappings with routes. In VLDB, 2006.

[9] N. Chomsky and M.-P. Schützenberger. The algebraic
theory of context-free languages. Computer
Programming and Formal Systems, pages 118–161,
1963.

[10] M. P. Consens and A. O. Mendelzon. Low complexity
aggregation in graphlog and datalog. In ICDT, 1990.

[11] P. Crawley and R. P. Dilworth. Algebraic Theory of
Lattices. Prentice Hall, 1973.

[12] Y. Cui. Lineage Tracing in Data Warehouses. PhD
thesis, Stanford University, 2001.

[13] Y. Cui, J. Widom, and J. L. Wiener. Tracing the
lineage of view data in a warehousing environment.
TODS, 25(2), 2000.

[14] N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. In VLDB, 2004.

[15] F. Dong and L. V. S. Lakshmanan. Deductive
databases with incomplete information. In Symposium
on Logic Programming, 1992.

[16] N. Fuhr. Probabilistic datalog — a logic for powerful
retrieval methods. In SIGIR, 1995.

[17] N. Fuhr and T. Rölleke. A probabilistic relational
algebra for the integration of information retrieval and
database systems. TOIS, 14(1), 1997.

[18] T. J. Green and V. Tannen. Models for incomplete and
probabilistic information. In EDBT Workshops, 2006.

[19] T. Imielinski and W. Lipski. Incomplete information
in relational databases. JACM, 31(4), 1984.

[20] Y. E. Ioannidis and R. Ramakrishnan. Containment of
conjunctive queries: beyond relations as sets. TODS,
20(3), 1995.

[21] P. Kolaitis and M. Vardi. Conjunctive-query
containment and constraint satisfaction. In PODS,
1998.

[22] W. Kuich. Semirings and formal power series. In
Handbook of formal languages, volume 1. Springer,
1997.

[23] L. V. S. Lakshmanan, N. Leone, R. Ross, and V. S.
Subrahmanian. Probview: a flexible probabilistic
database system. TODS, 22(3), 1997.

[24] L. V. S. Lakshmanan and F. Sadri. Probabilistic
deductive databases. In Symposium on Logic
Programming, 1994.

[25] M. Maher and R. Ramakrishnan. Déjà vu in fixpoints
of logic programs. In NACLP, 1989.

[26] I. S. Mumick. Query Optimization in Deductive and
Relational Databases. PhD thesis, Stanford University,
1991.

[27] I. S. Mumick, H. Pirahesh, and R. Ramakrishnan. The
magic of duplicates and aggregates. In VLDB Journal,
1990.

[28] I. S. Mumick and O. Shmueli. Finiteness properties of
database queries. In Fourth Australian Database
Conference, 1993.

[29] Y. Sagiv and M. Yannakakis. Equivalences among
relational expressions with the union and difference
operators. J. ACM, 27(4), 1980.

[30] A. D. Sarma, O. Benjelloun, A. Halevy, and J. Widom.
Working models for uncertain data. In ICDE, 2006.

[31] J. D. Ullman. Principles of Database and
Knowledge-Base Systems, volume II. Computer
Science Press, 1989.

[32] L. A. Zadeh. Fuzzy sets. Inf. Control, 8(3), 1965.
[33] E. Zimányi. Query evaluation in probabilistic

relational databases. TCS, 171(1-2), 1997.

