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HETEROGENEOUS AUTONOMOUS DISTRIBUTED DATA SERVICES

Provenance for database transformations

or
an algebraic view of annotated data

Val Tannen et al : “Provenance Semirings”
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MOTIVATION

m Annotations capture:
= PROVENANCE
s UNCERTAINTY
= TRUST
s SECURITY
= MULTIPLICITY

m Semirings bring:
= Operations for annotation propagation in a uniform
view and with good properties
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Propagating annotations through database

operations
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Another way to propagate annotations
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Another use of +

p+r+s

+ means alternative use of data
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An example in positive relational algebra (SPJU)
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An example in positive relational algebra (SPJU)

R
A B C A C
abc acl|(p-p+p-p)-0
dbe|l ael|p-r-1
f ge|S dec|r-p-0
del|l(lr-r+r-s+r-r)-1
f el(s-5s+s5-r+s-5)-1

For selection we multiply
with two special annotations, 0 and 1
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FORMALIZATION

A space of annotations, K

K-relations: every tuple annotated with some element from A.

Binary operations on K. - corresponds to joint use (join),
and -+ corresponds to alternative use (union and projection).

We assume K contains special annotations 0 and 1.
“"Absent” tuples are annotated with 0!
1 isa "neutral” annotation (no restrictions).

Algebra of annotations? What are the laws of (k, +, -, 0,1) ?



REQUIRED LAWS ON K

m Equivalent queries should produce the same
annotations

= Union is associative and commutative
= Joinis associative, commutative and distributes over union

= Projection and selection commute with each other and with
union and join (when applicable)

m Theorem:

= Above identities holds for queries on K-relations iff (K, +, ., 1,0)
is a commutative semiring



What is a commutative semiring?

An algebraic structure (K, +, -, 0, 1) where:
K is the domain
+ is associative, commutative, with O idenfity
is associative, with 1 identity
distributes over +
a-0=0-a=0

= semiring

is also commutative

Unlike ring, no requirement for inverses to +
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Using the laws: polynomials

R Q

A B C A C
abecl|P a e|P’
db e lr d el|l2f+rs
fgels £f al|rs + 25

Polynomials with coefficients in M and
annotation tokens as indeterminates p, 1, 5

capture a very general form of provenance
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Provenance reading of the polynomials

R Q

A B C A C
abecl|p a epr
db e lr d e
fgels f elrs + 25

three different ways to derive d e
two of the ways use only r

but they use it twice
the third way uses ronce and s once
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BEYOND TUPLE ANNOTATIONS

Relation, attribute and field annotation (1)
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al el |u?p?xy? + uvpmxyz

Neutral annotation 1 used when
we don’t bother to track data.
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HOMOMORPHISMS

m Useful to evaluate the polynomials

= by mapping X to K and extending it to an homomorphism from
N[X]toK:

m h(p1 +p2) = h(p1) + h(p2) h(p1.p2)= h(p1).h(p2)
m h(1)=1 h(o)=0
= to obtain:

m trust scores
m multiplicity
m uncertainty values

m access control levels

m Useful to hide detail and increase abstraction

= by mapping provenance tokens, many to few
= Stop tracking tokens by mapping them to 1 (neutral)
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Doesn't always
work, eg. difference.

Fundamental property

For every query g and every homomorphism of
commutative semirings h : K, — K, the following

“commutes”;
h
K,-data » K,-data
q i
- h K _dat:
K,-data s,-datd
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q(h(R)) = h(a(R))
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(Direct) application to multiplicity: bag semantics
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Application to c-tables: boolean conditions used as
annotations for modeling incomplete databases

(BoolExp(X), A, WV, T, 1)
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Application to event tables: probabilistic databases
(P(R), U, N, 0, Q)

a o |2
a b cfp g S a = |[
d b e d o ||
f g e d e |2r-+rs5
f e |2s+rs
h (with p = X, eval
r=Y,s =2) with p = X, r=Y, s =Z
(using v for ‘+"and  for ‘. ")
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Application to access control

(&, min, max, 0, P) where A=P<C<5<T<0

. . i i r/“l-:ur'ldﬂmerltﬂl -\'
Suppose pis public, ris secret, s is top secret | property implies
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“User with secret clearance”
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CONCLUSION

mProvenance is the basis for :

= UNCERTAINTY
= TRUST

= SECURITY

= MULTIPLICITY

m The semiring (N[X], +, ., 0, 1) is the algebraic
foundation for computing provenance over
queries

m Homomorphisms are the tools for evaluating
provenance in different settings
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