

Provenance for database transformations or

an algebraic view of annotated data

Val Tannen et al : "Provenance Semirings" [GreenKarvounarakis&T PODS o7]

ΜοτινατιοΝ

Annotations capture:

- PROVENANCE
- UNCERTAINTY
- TRUST
- SECURITY
- MULTIPLICITY

Semirings bring:

Operations for annotation propagation in a uniform view and with good properties

Propagating annotations through database operations

03/24/10

EDBT Keynote, Lausanne

Another way to propagate annotations

Another use of +

EDBT Keynote, Lausanne

13

An example in positive relational algebra (SPJU)

 $\mathbf{R} = \sigma_{C=e} \pi_{AC} (\pi_{AC} \mathbf{R} \bowtie \pi_{BC} \mathbf{R} \cup \pi_{AB} \mathbf{R} \bowtie \pi_{BC} \mathbf{R})$ $\mathbf{A} = \mathbf{C}$ $\mathbf{A} = \mathbf{C}$

An example in positive relational algebra (SPJU)

03/24/10

EDBT Keynote, Lausanne

FORMALIZATION

A space of annotations, K

K-relations: every tuple annotated with some element from K.

Binary operations on K: · corresponds to joint use (join), and + corresponds to alternative use (union and projection).

We assume K contains special annotations 0 and 1.

"Absent" tuples are annotated with 0!

1 is a "neutral" annotation (no restrictions).

Algebra of annotations? What are the laws of $(K, +, \cdot, 0, 1)$?

REQUIRED LAWS ON K

Equivalent queries should produce the same annotations

- Union is associative and commutative
- Join is associative, commutative and distributes over union
- Projection and selection commute with each other and with union and join (when applicable)

Theorem:

Above identities holds for queries on K-relations iff (K, +, ., 1,0) is a commutative semiring

What is a commutative semiring?

An algebraic structure $(K, +, \cdot, 0, 1)$ where:

- + is associative, commutative, with 0 identity
- is associative, with 1 identity
- distributes over +
- \circ $a \cdot 0 = 0 \cdot a = 0$
- is also commutative

Unlike ring, no requirement for inverses to +

Using the laws: polynomials

Polynomials with coefficients in \mathbb{N} and annotation tokens as indeterminates p, r, scapture a very general form of **provenance**

19

Provenance reading of the polynomials

- three different ways to derive d e
- two of the ways use only r
- but they use it twice
- the third way uses r once and s once

BEYOND TUPLE ANNOTATIONS

Relation, attribute and field annotation (1) Ru AX BY C1 $\pi_{_{ m AC}}$ ($\pi_{_{ m AB}}$ R $\, \Join \,$ ($\pi_{_{ m BC}}$ R $\, \cup \,$ S)) ... $\mathbf{a}^1 \mathbf{b}^1 \mathbf{c}^1$ A¹ C¹ $\mathbf{a}^1 \mathbf{c}^1 u^2 p^2 x y^2 + u v p m x y z$ S٧ B1 C1 Neutral annotation 1 used when m we don't bother to track data.

03/24/10

EDBT Keynote, Lausanne

HOMOMORPHISMS

Useful to evaluate the polynomials

- by mapping X to K and extending it to an homomorphism from N[X] to K :
 - h(p1+p2) = h(p1) + h(p2) h(p1.p2) = h(p1).h(p2)
 - h(1) = 1

h(o) = o

- to obtain:
 - trust scores
 - multiplicity
 - uncertainty values
 - access control levels

Useful to hide detail and increase abstraction

- by mapping provenance tokens, many to few
- Stop tracking tokens by mapping them to 1 (neutral)

q(h(R)) = h(q(R))

(Direct) application to multiplicity: bag semantics

Application to c-tables: boolean conditions used as annotations for modeling incomplete databases

Application to event tables: probabilistic databases

 $(\mathcal{P}(\Omega), \cup, \cap, \emptyset, \Omega)$

Application to access control (A, min, max, 0, P) where A = P < C < S < T < 0

CONCLUSION

Provenance is the basis for :

- UNCERTAINTY
- TRUST
- SECURITY
- MULTIPLICITY
- The semiring (N[X], +, ., o, 1) is the algebraic foundation for computing provenance over queries
- Homomorphisms are the tools for evaluating provenance in different settings

