

Querying Data through Ontologies

Fabrice.Jouanot@imag.fr, MdC UJF (Speaker)
Marie-Christine Rousset, PR UJF
Genoveva Vargas-Solar, CNRS

Ontologies: What, how and why?

- A formal description of a domain of interest
 - a vocabulary (classes and properties)
 - enriched with statements that constrain the meaning of the terms used in the vocabulary
 - java can be a dance, an island, a programming language or a course
 - the statement *java* is a subclass of *CS Courses* makes clear the corresponding meaning for java: it is a course
- With a logical semantics
 - The statements constraining the vocabulary are in fact axioms in logic
 - Description Logics are used as fragments of first-order logic for enabling decidability
- Thus enabling reasoning

An example of ontology

■ A taxonomy (graphical representation of subclass constraints)

+ set of properties with constraints on their domain and range (RDFS)

Teaches (Academic Staff, Courses)
TeachesTo (Academic Staff, Students)
Manager (Staff, Departments)

+ additional constraints (not expressible in RDFS but in OWL)

Students disjoint from Staff
Only Professors or Lecturers may teach to Undergraduate Students

Reasoning: a central task

- For query answering in P2P data management systems
 - an answer to a query can be <u>inferred</u> from local data and distant data obtained by query reformulation from mappings between distributed ontologies
 - SOMEWHERE
- For handling contextual data
 - CONTINUUM
- For verifying properties of consistency or of security expressed as logical constraints
 - Atomic, secure and adaptable services coordination (ORCHESTRA)
 - Mashing up web data (E-CLOUDSS, RED-SHINE)

Main contributions and ongoing work about SomeWhere

- Several invited talks (MC Rousset)
 - OODBASE 2006, SOFSEM 2006, BDA 2007, EGC 2010
- Decentralized Reasoning with Inconsistencies in Peer-to-Peer Inference Systems
 - G-H Nguyen PhD work, joint supervised with P. Chatalic (Gemo-IASI Orsay)
 - [ECAl 2006]
- Extension of the model and algorithms of SomeWhere to RDFS and DL-Lite
 - Joint work with F. Goasdoué (Gemo-IASI Orsay)
 - [Journal of Data semantics, 2007], [IJCAI 2009]
- Modeling and reasoning about trust in P2P data networks
 - ANR Dataring project (joint work with J.Euzenat, EXMO)
 - WebDam (ERC Advanced Grant's Serge Abiteboul)

Handling Contextual Data

- The context is the whole information that characterize the situation of an entity in its environment.
 - context data are dynamic and change continuously
 - requires context modeling and querying capabilities
- Context data is the key in ambient computing application
 - for adapting to dynamic and changing environment
- Main issues in context data management
 - context data acquisition
 - context data interpretation within a context model
 - context data exploitation

Our approach

- Flexible modeling of context as an ontology
 - for declarativity and reasoning capabilities
 - using standards of Semantic Web (RDFS, OWL)
- Reasoning capabilities exploited for
 - verifying context correctness
 - defining a query language involving inference
 - comparing and ranking results
 - particularly important for retaining the right adaptation strategies
- Supported by CONTINUUM (ANR project, CONTINUITE DE SERVICE EN INFORMATIQUE UBIQUITAIRE ET MOBILE)
 - involving IIHM LIG group, Rainbow I₃S group and many business groups

